

CO₂ Capture Systems and

Opportunities for Process Intensification

David C. Miller, Ph.D. Senior Fellow February 2020

Timeline of Carbon Capture Research

2030: Transformational tech target \$30/ton CO₂

NATIONAL ENERGY TECHNOLOG LABORATORY

Need for CO₂ Capture

 Limits to efficiency gains, fuel switching reductions and CCS only option for some industrial sectors

 Delaying or abandoning CCS would increase power sector compliance cost by 40+%

Dispatchable Power with Capture Lowers Costs

- Solar, wind
- Storage, demand response
- Nuclear, CCS, geothermal

"Firm low-carbon" resources like CCS and nuclear lower the cost of deep decarbonization by 10-62%

Sepulveda, et al., Joule (2018) https://doi.org/10.1016/j.joule.2018.08.006

Cost Variability for Technology & CO₂ Concentration

Supercritical Pulverized Coal Power Plant

Conventional Coal with CO2 Capture

Supercritical Pulverized Coal Power Plant

- Pre-treatment
 - Lowers SO_x to ~ 1 ppmv from ~40 ppmv out of FGD
- Cansolv CO₂ Capture Process Details
 - 90 % CO₂ capture
 - Steam extraction from crossover pipe between IP and LP sections of steam turbine
 - − Product CO₂ ~ 30 psia
- CO₂ Compression System
 - CO₂ compressed to 2,200 psig
 - 8 stages (2.23 to 1.48 stage pressure ratios)
 - Intercooling in each stage
 - · Water knockout in first 3 stages
 - TEG dehydration unit between stages 4 and 5
 - 300 ppmw H₂O in CO₂ product

Advanced Stripper Alternative Process Configuration

Optimization & Heat Integration

Objective: Max. Net efficiency

Constraint: CO_2 removal ratio $\geq 90\%$

Decision Variables (17): Bed length, diameter, sorbent

and steam feed rate

	w/o heat integration	Sequential	Simultaneous
Net power efficiency (%)	31.0	32.7	35.7
Net power output (MW _e)	479.7	505.4	552.4
Electricity consumption b (MW _e)	67.0	67.0	80.4

Base case w/o CCS: 650 MW_e, 42.1 %

Simultaneous Optimization of Materials & Process

Membrane	Permeance	Selectivity	COE	# Member
	(GPU)	α _{CO2/N2}	% Improvement	Stages
Base	2500	28	Base	3

Simultaneous Optimization of Materials & Process

Membrane	Permeance (GPU)	Selectivity α _{CO2/N2}	COE % Improvement	# Member Stages
Base	2500	28	Base	3
New	2600	74	9.5%	3

Simultaneous Optimization of Materials & Process

Membrane	Permeance (GPU)	Selectivity α _{CO2/N2}	COE % Improvement	# Member Stages
Base	2500	28	Base	3
New	2600	74	9.5%	3
New	2600	74	14%	4

Maximizing the learning at each stage of technology development

Early stage R&D

- Screening concepts
- Identify conditions to focus development
- Prioritize data collection & test conditions

Pilot scale

- Ensure the right data is collected
- Support scale-up design

Demo scale

- Design the right process
- Support deployment with reduced risk

Carbon Capture Pilot Plant Testing

Sequential Design of Experiments to Maximize Learning

Model + Experiments + Statistics
Ensure right data is collected
Maximize value of data collected

Early Stage Systems Design & Optimization DOCCS Transformational Carbon Capture Projects

Technology Centre Mongstad – Summer 2018

www.tcmda.com

CO₂ Utilization Provides Revenue Stream

An Evolving Energy Ecosystem

Coordinated Energy Systems

Total: 4,178 Billion kilowatt-hours (kWh)

Data source: EIA, 2018

Tightly Coupled Hybrid Energy Systems

Process Intensification & Modularization

- Intensification smaller, cleaner, and more energy-efficient technology
 - Reactive distillation
 - Dividing wall columns
 - Rotating packed bed
 - Microreactors
- Modular design
 - "Numbering up" instead of scaling up
 - Reduced investment risk
 - Improved time to market
 - Increased flexibility
 - Improved safety
 - Reduced on-site construction

Figure from Rawlings et al., 2019

Process Intensification: Reactive Distillation

Advanced System Design & Optimization

Basic blocks combine to model complex, intensified units

Kaibel Column Conceptual Design Example

- Components: Methanol, ethanol, n-propanol, n-butanol
 - 99% purity for each component
- 42 million combinations
- GDP model written using Pyomo.GDP
 - 5715 constraints
 - 2124 nonlinear
 - 100 disjunctions
 - 3599 variables
 - 178 binary
 - 3421 continuous
- Solved in 639 sec using GDPopt-LOA solver
 - Logic-based outer approximation algorithm
 - 4 iterations
- Resulting design:
 - 46 trays (21% reduction vs. base case)
 - Dividing wall between 12th and 26th tray
 - Feed at 18th tray
 - Side outlets at 13th and 22nd trays

22

Optimal Design Kaibel Column reduces energy consumption by more than 40% compared to 2 columns

Rawlings et al., 2019

Challenges & Opportunities

Acetic Acid Distillation Reactive Distillation Reaction Distillation Development

Life Cycle Analysis

Variability of CO₂ streams

Technology
Stability with
Contaminants

Conclusion

- Economics & Viability are f (system)
- Optimal system = f (materials, technology, concentration, operational approach)

David C. Miller, Ph.D. David.Miller@netl.doe.gov

