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Timeline of Carbon Capture Research

1997 2012
NETL Carbon Capture Storage $80-100/ton co, 2020
Program initiated with $1mil Breakthrough CCS project at Air $45/ton CO
Products and Chemicals begins L le pilot t t'2 10

1992 capturing CO, and sending to oilfield for arge scale pilot testing (10-

: : T 25 Mwe) for 2" gen tech
First International EOR; Initial release of CCSI Toolset
Conference on 2_007
Carbon Dioxide 10 year anniversary of CCS 2014
Removal (ICCDR-1) program, which has grown to $100M Sask Power’s Boundary Dam

commissioned
~2015 - 2020

2016
1993 2003 2011 $60/ton CO,
DOE/MIT prioritize research DOE/NETL initiate Regional Carbon DOE/NETL publishes
needs for CO, capture and  Sequestration Partnership (RCSP) Carbon Dioxide Capture
sequestration; first gen and Storage RD&D 2017
capture tech for PCC is 2009 Roadmap Petra Nova carbon

emissions reduction

aqueous amines NETL announces 12 large-scale capture projects; First : )
system begins operation

National Carbon Capture Center (NCCC) opens led by
DOE/NETL and Southern Company Services

N=|Harona: 2025: 2"d gen tech target $40/ton CO,
TLESoNSs" 2030: Transformational tech target $30/ton CO,




Need for CO, Capture

 CCS achieves 20% of cumulative reductions

from 2015 to 2050 (storing over 123 Gt) Business as usual

+88% from 2009 to 2050
* International Target Compared to +6 °C Emission Technology

business as usual, assumes 66%

(©))
o

@ End-use fuel and electricity efficiency
less fossil fuel use, ~80% less coal 50 O
L Renewables
use 40 3
S B Carbon capture and storage
c
@
308 9%  End-use fuel switching
O
20; Nuclear
% Power generation efficiency and fuel
+2 °C - Ml switching
o
; International target
o o o A o % -50% from 2009 to 2050
\QQQ & q9©° & (]9'9 S (19(19 S q/g? I (]9@ I qpo

« Limits to efficiency gains, fuel switching reductions

» Delaying or abandoning CCS would increase
and CCS only option for some industrial sectors ying Ing would |

power sector compliance cost by 40+%

NATIONAL

Iﬁ%g’ﬁ'%g@ *Data based on International Energy Agency, Energy Technology Perspectives 2015 - www.iea.org/etp2015
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Dispatchable Power with Capture Lowers Costs
Northern System

é 300

s @ Solar, wind

~

4 @ Storage, demand response

O Nuclear, CCS, geothermal

250

2 “Firm low-carbon” resources like CCS

kS, and nuclear lower the cost of deep

— . .

2 decarbonization by 10-62%
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= Sepulveda, et al., Joule (2018)

200 100 50 10 5 1 0 200 100 5 10 5 1 0 : -
CO, Emission Limit g/kWh https://doi.org/10.1016/j.joule.2018.08.006
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4 : e NG P 99% CO, s Ethylene Oxide 100% CO,
—

E ¥ o s Arnimonia 99% C02 = Fthanaol 100% C02

20 : e S5te€123.2-26.4% CO gemmmm Cement ~22.4% CO,
Ref H2 44.5% CO, & PCReference 11-14% CO,
U ] ] | ] ] |
0 20 100 150 200 250
Potential CO, Available in the U.S. from Existing Sources, M tonne/yr
N = [MATIONAL “Cost of Capturing CO, from Industrial Sources” January 2014
TLIESERISS"  https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1836



https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=1836

TL

LABORATORY Computer-Aided Process Design — FOCAPD 2014, July 13-17, 2014.

Cost Variability for Technology & CO, Concentration
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. =+=MEA (absorption) == PZ (Absorption)
==:-FSC PVAm (membrane) =#-POE1(Membrane)
) -=-POEZ2 (Membrane) == 13X (PSA)
_ —AHT (PSA) -==MVY (PSA)
==\WVEI (PSA) =—13X (VSA)
i = AHT (VSA) —MVY (VSA)
i \ ——WEI(VSA)

0% 10% 20% 30% 40% 50% 60% 70%
Flue gas CO, composition

= |FERay Hasan, First, Boukouvala, Floudas. Proceedings of the 8th International Conference on Foundations of




Supercritical Pulverized Coal Power Plant

Conventional Coal with CO, Capture

ACTIVATED erﬁ;: OXIDATION REBOILER REBOILER STACK GAS
CARBON AR CONDENSATE STEAM
18 19 32 31
l v
pa v v
INFILTRATION L7} 11—»1—13—> BAGHOUSE —15 16— FGD ——21—>» CANSOLV 33—
AR AC—10
7 1|4 ID FAN 4 |
17 20
HYDRATED 29 RECLAIMER STACK
SCR l
LIME |_> STEAM
> FLY AsH LIMESTONE ~ GYPSUM o
—1— 2— | ¥ SLURRY RECLAIMER
3 e CONDENSATE
0
FD FANS PULVERIZED
CoAL 34
6 BOILER l——35
—4—p 5—|—> <
v \ CO, COMPRESSORS
PA Fans X HP P —_— T~ ] VENT 4——— 23
TURBINE TURBINE LP TURBINE =
CoAL FEED l DRYER |
T
37
BOTTOM ASH \ 7y DRYER
CONDENSER “y DRYEstSTEAM CON%%NSATE
BOILER FEEDWATER |
FEEDWATER
HEATER < 38 28
SYSTEM coy
coc PRODUCT
Note: Block Flow Diagram is not intended to 2 COMPRESSORS
represent a complete material balance. Only
major process streams and equipment are
shown.

NATIONAL

TECHNOLOGY
LABORATORY




Supercritical Pulverized Coal Power Plant

* Pre-treatment
— Lowers SO, to ~ 1 ppmv from ~40 ppmv out of FGD
« Cansolv CO, Capture Process Details
— 90 % CO, capture
— Steam extraction from crossover pipe between IP and LP sections of steam turbine
— Product CO, ~ 30 psia
« CO, Compression System
— CO, compressed to 2,200 psig i puéﬂl‘ffé%?m - H0psia_ i

— 8 stages (2.23 to 1.48 stage pressure ratios) Cleanflue Ses L—y e

— Intercooling in each stage e
« Water knockout in first 3 stages

— TEG dehydration unit between stages 4 and 5
« 300 ppmw H,O in CO, product

» RICH AMINE————|
LEAN AMINE Lean/Rich Exchanger

E'ﬁ Intercooler

Absorber Stripper

LEAN AMINE

-

RICH AMINE
FLUE GAS WATER VAP|OR RECYCLE
| | | WATER VAPOR Stela""
BOOSTED FLUE RECOMPRESSION | LEAN AMINE/
— »| PrescrusBER |-"RESCRUBEER
GAS FROM FGD BLOWDOWN WATER VAPCR
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Advanced Stripper Alternative Process Configuration

Compressor Condenser
150 bar ‘ f‘
H,O :
Vented 2 Cold Rich BPS 6.5 bar
gas 7~ N\
0,
1.3% C Warm Rich v{

BPS
115 °C /\
Absorber 9 Trim cooler .
Fluegas _IIIII|-|IIII‘ "
12% CO, Lean solvent Cross exchanger
NATIONAL

TECHNOLOGY Reference: Yu-Jeng Lin and Gary T. Rochelle / Energy Procedia 63 ( 2014 ) 1504 — 1513
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Optimization & Heat Integration

Objective: Max. Net efficiency
Constraint: CO, removal ratio 2 90%

IP Steam Extraction LP Steam Extracuon

Reheater : :
)“ 3 mﬁ;‘ o P steam
= ->| Pressure [-= === o ure leum
Turbine hiRe Turbine

CQndenser

____________ ~< —————-—_____'(__ Makeup
Feed Water Water
Coal e

High Tempe rature Low Temperature
Air Feed Water Heater Feed Water Heater
Intermediate
Flue Gas Compressor Cooler

Clean Gas

Steam Cycle

CO, Stream

CO,
Stream

]
) To Storage
I
1

| = = =>\Water ' == =>Water == =¥ \Water

o . . 5\%(:;?_9_ o - —Steam Compression System
Decision Variables (17): Bed length, diameter, sorbent o L
sorber Regenerator
and steam feed rate . Gas Sream
- Ty e ‘ Heater e Water/Steam
SolidSorbent cooler Stream
Carbon Capture System Steam ‘ T SoldSueam
w/o heat : .
: : Sequential Simultaneous
Integration

Net power efficiency (%)
Net power output (MW,)
Electricity consumption® (MW,)

Base case w/o CCS: 650 MW, 42.1 %
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31.0 32.7 35.7

479.7 505.4 552.4

67.0 67.0 80.4

Chen, Y., J. C. Eslick, I. E. Grossmann and D. C. Miller (2015). "Simultaneous Process Optimization and Heat Integration Based on Rigorous Process Simulations."
TECHNOLOGY Computers & Chemical Engineering. doi:10.1016/j.compchemeng.2015.04.033
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Simultaneous Optimization of Materials & Process

Membrane Permeance Selectivity # Member
(GPU) acolez % Improvement Stages

Base 2500 Base
= "L =1 To Stack
' Power | >
' Plant 1 ,IZ
Gas M1
CO, to
- T T T T ‘ ___| Storage
=1 Compressors
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Simultaneous Optimization of Materials & Process

Membrane Permeance Selectivity # Member
(GPU) acolez % Improvement Stages

Base 2500 Base
New 2600 74 9.5% 3

= "L =1 To Stack

' Power | >

' Plant 1 ,IZ
Gas M1
CO, to
- T T T T ‘ ___| Storage
=1 Compressors

l-[liﬂ
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Simultaneous Optimization of Materials & Process

Membrane Permeance Selectivity # Member
(GPU) “cozmz % Improvement Stages
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2500
2600
2600

I

' Power
. Plant !

Flue
Gas ' M1

Base
9.5% 3
14% 4
To Stack
=

CO, to

Storage

Lo
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C C S I Maximizing the learning at each stage of technology development

Carbon Capture Simulation Initiative

Lab & Pilot Scale

Experiments & Data

* Early stage R&D
* Screening concepts
* Identify conditions to focus development
* Prioritize data collection & test conditions Physical Properties
Kinetics

* Pilot scale Thermodynamics

* Ensure the right data is collected
* Support scale-up design

Device Scale Models
Validated 3-D, CFD

Process Systems
Design, Optimization & Control

 Demo scale
* Design the right process

* Support deployment with reduced risk

-

72 il

N=]|NATionaL ‘:}I \ e -
TL[ESERQASSY \‘ — National Laboratory - Los Alamos o

Il Lawrence Livermore
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CCSI

Carbon Capture Simulation for Industry Impact

Carbon Capture Pilot Plant Testing

Sequential Design of Experiments to Maximize Learning Technology Centre Mongstad — Summer 201

www.tcmda.com

Model + Experiments + Statistics
Ensure right data is collected
Maximize value of data collected

= I ‘
©

- Prior Cl Width: 10.5+ 1.5

Early Stage Systems Design & Optimization
DOCCS Transformational Carbon Capture Projects

Width of 95% Confidence Interval

N_ |NATIONAL Candidate Set No.
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CO, Utilization Provides Revenue Stream |N=|70>
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P @) il @ SR
Capture & Storage y Generation

A
I
Cost of | Cost of CO; Revenue from Sale

CO, Capture  ;Sequestration of CO, for Utilization
Process —

- - h =
b & ool

ﬁ

— @0
Power Plant | H ' od

Beneficial Goods

Value Added to and Services

Company’s Products
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An Evolving Energy Ecosystem

Coordinated Energy Systems

"[—"L» Solar

Nucleur 67
807 Billion EWh
Bilion kwh

_r?ﬁ';:- . T a '\ -I-i".l-
i e ‘[ Wind
Coal 275
1,146 ‘ ! Billion kWh

Billion kWh
Nu’rurul Gus h HYdr;;Jzﬂwer
Billion KWh Billion Ewh
123
Billion EWh

Total: 4,178 Billion kilowatt-hours (kWh)

Data source: EIA, 2018
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Tightly Coupled Hybrid Energy Systems

Nuclear Reactors
(LWR, SMRs)

I
DOoooEE

(~ Gas Turbine
Combined Cycle

o

Coal, Oil, or
Bio-Fired

Thermal
Energy
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Chemical Process
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Power
Generation

| e

Electrical
Energy

Thermal Electricity
Reservoir Battery

= 43

Energy Storage

Hybrid System Demand Control
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I Electrical
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Process Intensification & Modularization

 Intensification smaller, cleaner, and more energy-efficient technology
— Reactive distillation

L .. _Lic_|uid .~ D
— Dividing wall columns distributor >
— Rotating packed bed - — R,
— Microreactors F—l=t— Pl

 Modular design
— “Numbering up” instead of scaling up
— Reduced investment risk
— Improved time to market
— Increased flexibility
— Improved safety
— Reduced on-site construction

Vapor .~
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Process Intensification: Reactive Distillation

Acatic Acid
Mathanol |

Catalyst

1
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Muthyl
Acetata

" Solvent
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|
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1

0

Watery

!

=
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Y

o

Watar ¥

Y

T,

¥
Heavias

Conventional

Acetic
Acid

O

Distillation

L )

Extractive
Distillation

Catalyst

Methanol

Reactive
Distillation

Reaction

Reactive
Distillation

Distillation

- — -

Methyl

Acotate

¥

Stankiewicsz et al., “Process Intensification: Transforming Chemical Engineering”, Chemical Engineering Progress, Jan 2000.
https://www.rvo.nl/sites/default/files/2013/10/Process%20Intensification%20Transforming%20Chemical%20Engineering.pdf

o)

Integrated: 90%
savings

19



https://www.rvo.nl/sites/default/files/2013/10/Process%20Intensification%20Transforming%20Chemical%20Engineering.pdf

IDAES Advanced System Design & Optimization

Institute for the Design of
Advanced Energy Systems

T C tual Design via
Hierarchical Model Customization Ongig:rztrui’z?e Vi
Process Model Library L
. General Flash Reactors S L et e T ity out %.
D= ‘ o T ’ﬁ‘ /‘y Yo
i Expander ‘3 Equilibrium Gibbs 11 %1e
HHHHH T FIER e > BUE
-~ D~ h ER NI (T Process Design & Optimization

Process Integration

Flowsheet Object
mTTSS
¥ Ny
Steady Dynamic
State Model
}Y - _Kl/ Dynamics & Control
|
I_ T Optimal ControII
|_ State Estimationl
Parameter
Estimation
NATIONAL I_ - _I
= i - A Dynami
¥E BESY Algebraic Modeling Language T L —
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Basic blocks combine to model complex, intensified units
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Kaibel Column Conceptual Design Example

Condenser Tray

= Components: Methanol, ethanol, n-propanol, n-butanol :;ir%*:uct i (permanent)
— 99% purity for each component i
= 42 million combinations
= GDP model written using Pyomo.GDP
— 5715 constraints /T} A Rectification Trays
» 2124 nonlinear (conditional)
— 100 disjunctions
« 3599 variables ABCD — B
- 178 bmary — C Feed Tray
— 3421 continuous Feed (permanent)
= Solved in 639 sec using GDPopt-LOA solver

— Logic-based outer approximation algorithm
— 4 iterations D

» Resulting design:
— 46 trays (21% reduction vs. base case)
— Dividing wall between 12th and 26t tray
— Feed at 18t tray
— Side outlets at 13t and 22" trays

Stripping Trays
(conditional)

Reboiler Tray
(permanent)

Optimal Design Kaibel Column reduces energy consumption by more than 40% compared to 2 columns

N
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NATIONAL Rawlings et al., 2019
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Challenges & Opportunities
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Market Risk

e

Scalability

Li—

Variability of CO, streams

_ ﬂ

A;:iltilcr m

caays, | e Process
oaction Intensification

- System

— Development
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+CA

Life Cycle Analysis

environment Ieconnmicsl social

Life Cycle Analysis

Technology
Stability with
Contaminants




Conclusion

« Economics & Viability are f (system)
« Optimal system = f (materials, technology, concentration, operational approach)

e 2
IDAES -< CCS|

Institute for the Design of

Advanced Energy Systems Carbon Capture Simulation for Industry Impact

David C. Miller, Ph.D.
David.Miller@netl.doe.gov
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