Large-scale multidisciplinary design optimization under uncertainty using graph-based modeling

- Wind Energy Systems Engineering (WESE) workshop
 - DTU, Roskilde, Denmark
 - December 3, 2024
 - John Hwang
 - Associate Professor
 - Mechanical and Aerospace Engineering
 - UC San Diego

Design optimization in wind energy system design

Wind turbine design

Madsen, M. H. A., Zahle, F., Sørensen, N. N., & Martins, J. R. (2019). Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine. *Wind Energy* Science, 4(2), 163-192.

https://www.youtube.com/watch?v=5gSY7lbUuMA

Turbine-tower-layout design

Stanley, A. P., & Ning, A. (2019). Coupled wind turbine design and layout optimization with nonhomogeneous wind turbines. Wind Energy Science, 4(1), 99-114. https://flow.byu.edu/posts/coupled-turbine-farm

Wind farm design

Dunn, R. C., Joshy, A. J., Lin, J. T., Girerd, C., Morimoto, T. K., & Hwang, J. T. (2023). Scalable enforcement of geometric non-interference constraints for gradient-based optimization. Optimization and Engineering, 1-34.

Design optimization

Use of numerical optimization as a tool to assist in engineering design

F(x)

•objective function

design variables

subject to $\[\ C_i(x) \le 0, \forall i \in \{1, ..., m\} \]$ $| \le x \le u$

→constraint functions

He, X., Li, J., Mader, C. A., Yildirim, A., & Martins, J. R. (2019). Robust aerodynamic shape optimization—from a circle to an airfoil. Aerospace Science and Technology, 87, 48-61. https://www.youtube.com/watch?v=FHYTBguMfWc

Large-scale multidisciplinary design optimization (MDO)

Dozens or more design variables Complex models considering multiple disciplines, subsystems, and conditions

Ruh, M. L., Sarojini, D., Fletcher, A., Asher, I., & Hwang, J. T. (2023). Large-scale multidisciplinary design optimization of the NASA lift-plus-cruise concept using a novel aircraft design framework. arXiv preprint arXiv:2304.14889.

Objective F(x)	Gross weight			
Design variables x	Rotor radii			
	Blades' twist, chord profiles			
	Motors' dimensions			
	Wing/tail dimensions			
	Battery mass			
	Rotor speeds			
	Rotor tilt angles			
	Vehicle trim variables			
	Wing structural sizing			
	Total design variables			
Constraints C(x)	Geometric constraints			
	Aircraft equations of motion			
	Structural constraints			
	Propulsion constraints			
	Acoustic constraints			
	Total constraints			

Large-scale multidisciplinary design optimization (MDO)

Dozens or more design variables Complex models considering multiple disciplines, subsystems, and conditions

Aerodynamics (wing)

Battery

Aerodynamics (rotor)

Weights

Motor

Acoustics

Large-scale multidisciplinary design optimization (MDO) under uncertainty using graph-based modeling

Background—classical methods for large-scale MDO

Graph-based modeling for large-scale MDO

Application: wind farm layout design optimization

Towards large-scale MDO under uncertainty

Large-scale MDO algorithms use either gradient-based or gradient-free optimizers

General-purpose optimization algorithm

Gradient-based optimizer (SNOPT)

41 iterations

Gradient-free optimizer (ALPSO) 1340 iterations

Large-scale MDO requires gradient-based optimization and adjoint sensitivity analysis

Large-scale MDO requires gradient-based optimization and adjoint sensitivity analysis

With 100s of design variables:

Gradient-based optimization is multiple orders of magnitude faster

than gradient-free optimization

Adjoint sensitivity analysis computes the gradient 100x faster than finite-difference approximations

[Hwang, 2015, University of Michigan]

We desire a sensitivity analysis method with both low computational time & low implementation effort

Large-scale multidisciplinary design optimization (MDO) under uncertainty using graph-based modeling

Background—classical methods for large-scale MDO

Graph-based modeling for large-scale MDO

Application: wind farm layout design optimization

Towards large-scale MDO under uncertainty

Graph-based modeling is a new paradigm for constructing and working with models

Conventional paradigm

Graph-based modeling paradigm

<u></u><u></u><u></u><u></u><u></u>

Compile or interpret

Graph-based modeling enables automation of multidisciplinary adjoint sensitivity analysis

Gandarillas, V., Joshy, A. J., Sperry, M. Z., Ivanov, A. K., & Hwang, J. T. (2024). A graph-based methodology for constructing computational models that automates adjoint-based sensitivity analysis. Structural and Multidisciplinary Optimization, 67(5), 76.

Generated code performs automatic sensitivity analysis

Computational graphs of real-world models

Free-wake model

Equivalent circuit motor model

Model used in the TC1 problem

Model used in the TC2 problem

~20,000 operations

~200,000 operations

.5

222.2.2722

一对我们的第三

			20	

1.1

Currente a

A PASSAN A SALAN

法书 化无关试验 机管理

The second s

and the second second second

A STATE AND A STATE

1.1.8.07

P. 100

ES.

Large-scale multidisciplinary design optimization (MDO) under uncertainty using graph-based modeling

Background—classical methods for large-scale MDO

Graph-based modeling for large-scale MDO

Application: wind farm layout design optimization

Towards large-scale MDO under uncertainty

Application: Offshore wind farm layout optimization using a novel shape constraint formulation

Graph-based modeling accelerated implementation of a new method for enforcing shape constraints

New constraint-enforcement method using **level-set functions**

Design optimization problem

maximize with respect to $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N_t}$ subject to $d_{ij} \ge d_{min}$

AEP $\phi(x_i, y_i) \ge 0$

Spacing constraint:

Wind turbines maintain 1.8 rotor diameters distance space from each other

Boundary constraint:

Wind turbines must be within the feasible region

-0.8

0.6

-0.4

0.2

Optimization results

Optimization results

Large-scale multidisciplinary design optimization (MDO) under uncertainty using graph-based modeling

Background—classical methods for large-scale MDO

Graph-based modeling for large-scale MDO

Application: wind farm layout design optimization

Towards large-scale MDO under uncertainty

Large-scale MDO under uncertainty formally considers uncertain parameters in the problem formulations

Large-scale MDO

 $\min_{x} \quad \mathscr{F}(x)$
s.t. $\mathscr{C}(x) < 0$

Large-scale MDO under uncertainty

- min $\mathcal{M}(x) := \mathbb{E}[\mathcal{F}(x, U)] + \alpha \mathbb{S}[\mathcal{F}(x, U)]$
- $\begin{array}{ll} \text{s.t.} & \mathcal{N}_1(x) := \mathbb{E}[\mathcal{C}_1(x,U)] + \alpha \mathbb{S}[\mathcal{C}_1(x,U)] < 0 \\ & \mathcal{N}_2(x) := \mathbb{P}[\mathcal{C}_2(x,U) < 0] > P \end{array} \end{array}$

Accelerated Model evaluations on Tensor grids DAHPA using Computational graph transformations (AMTC)

Wang, B., Sperry, M., Gandarillas, V. E., & Hwang, J. T. (2024). Accelerating model evaluations in uncertainty propagation on tensor grids using computational graph transformations. Aerospace Science and Technology, 145, 108843.

AMTC provides significant speedups

Summary and takeaways

Large-scale MDO techniques have matured in the past decade
Gradient computation has been the biggest challenge
Graph-based modeling reduces the adoption barrier
Large-scale MDO under uncertainty is becoming feasible
Opportunities to apply these methods to wind energy system design

Thank you!

We are grateful for financial support from the following organizations:

HYUNDAI

MOTOR GROUP

http://lsdo.eng.ucsd.edu • jhwang@ucsd.edu

Mechanical and Aerospace Engineering