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Context of the study

Faults need to be predicted 

well before a failure happens
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O&M costs are significant!

Esp. offshore (up to 30% of total cost)

Reactive 
Maintenance

•Fix when it 
breaks

Preventive 
Maintenance

•Maintain at 
regular 
intervals so it 
does not 
break

Predictive 
Maintenance

•Predict when 
it will break 
and maintain 
accordingly



Fault detection: Two main approaches

➢ Based on Normal Behaviour Modelling (NBM)

+ Only healthy data needed for training

─ Cannot distinguish between different failure types

➢ Based on Classification

+ Different failure types can be distinguished

─ Both healthy and faulty data needed for training

4

When detection of a certain fault 

type, e.g., Gearbox fault, is required
Classification Normal Behaviour Modelling



Classification
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Problem
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Failures are rare events!

Usually a handful of turbines

during a few years of operation 
Available datasets:

Very few failures events in 

the data
This leads to problems when 

using classification methods



A simple example
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Simulating the same failure at different seasonal conditions
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Synthetic

Proposed solution: Synthetic signal generation
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Methodology for synthetic SCADA signal generation
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Selected SCADA Signals:

Related to the operation of the component of interest

(e.g., Gearbox temperature and pressure signals)

Related to environmental conditions

(e.g., Ambient temperature)

Related to wind turbine operational mode

(e.g., Rotor speed)

𝑺

𝑬

𝑶

CAE

𝐷Health Indicator (HI)

1

1: Eftekhari Milani, A., Zappalá, D., and Watson, S.; A hybrid Convolutional Autoencoder training algorithm for unsupervised

bearing health indicator construction, Engineering Applications of Artificial Intelligence, 2024

𝑺 = 𝐹(𝑶, 𝑬, 𝐷, 𝒁)

Assumption: S is a stochastic function of O, E, and D

Unit Gaussian

noise vector

𝑪Conditions

Signals



Methodology for synthetic SCADA signal generation
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modelled through a Conditional GAN (cGAN)

which is a probabilistic generative deep learning framework

Field signals

Synthetic signals

Probability of D input being real

Generator

Discriminator

Training Generation

𝒄𝑡
′ = {𝑶′, 𝑬′, 𝐷}

Shifted in time

Trained

Generator

𝑺 = 𝐹(𝑶, 𝑬, 𝐷, 𝒁)

𝑪



Dataset
▪ The SCADA dataset is received from Lucky Wind S.p.A

▪ Signals available from nine wind turbines (WT 1-9) through 5 years of operation, resampled to 6-hour intervals

▪ WT 8 experienced a gearbox failure in Feb 2022 →WT 8 used for training

▪ The remaining eight WTs → used for testing

▪ Selected signals for analysis:
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𝑺
Temperature signals: 3 gearbox bearings, gearbox oil, gearbox oil at the inlet

Pressure signals: gearbox oil before filter, and after filter

𝑬 ambient temperature, ambient wind speed

𝑶 rotor RPM



Results – Without synthetic signals
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ANN trained with data related to only one failure 
event (WT 8 – one year leading to failure)

➢ A lot of false positives around the date of the 
training set failure (February)

➢ Not clear whether the detection in WT 6 is, in 
fact, a fault or a false positive

Test wind turbines

The model cannot distinguish between the 

features specific to seasonal conditions at 

the time of failure and those specific to 

component degradation!

faulty

healthy



Results – With synthetic signals
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Fault discovered 

and addressed 

by the operators

ANN (Classifier) trained with the

field and synthetic datasets
ANN trained with both WT 8 data and four 
synthetically generated data

➢ Most of the false positives have been resolved

➢ A fault is detected at the end of Oct 2018 and 
continues until the end of May 2019

➢ The operating company confirmed that a 
gearbox fault was discovered and repaired 
around the end of May 2019



Conclusions

▪ Classification methods are useful when the detection of a certain type of fault is required. However, their 
application is hindered by the limited availability of failure events in SCADA datasets

▪ In this work, a method based on cGANs is proposed to generate synthetic signals and address this 
limitation

▪ The generated synthetic signals improve the training of a classifier to learn fault features, leading to 
significantly fewer false positives.

▪ This leads to the blind detection of a fault in the gearbox of another wind turbine seven months before 
its discovery and maintenance by the wind farm operators.
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Ongoing work

▪ Application to Remaining Useful Life (RUL) prediction
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Thank you for your attention!
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