

Scaling New Heights: The Certification Perspective on Wind Turbine Growth

Johan Olaison, Head of Section Loads offshore

03 December 2024

Johan Olaison Head of Section, Loads offshore

- M.Sc., Mechanical Engineering from Technical University of Linköping, Sweden
- DNV since 2016
 - Head of Section Loads offshore
 - Senior Principal Specialist
 - Project Manager
 - Loads and environmental condition
 - Load validation (part of Type Testing)
 - Control and protection systems
 - Prototype inspection and safety and function tests
- Previously with Garrad Hassan (1997-2008) and Nordic Wind Power (2008-2012)

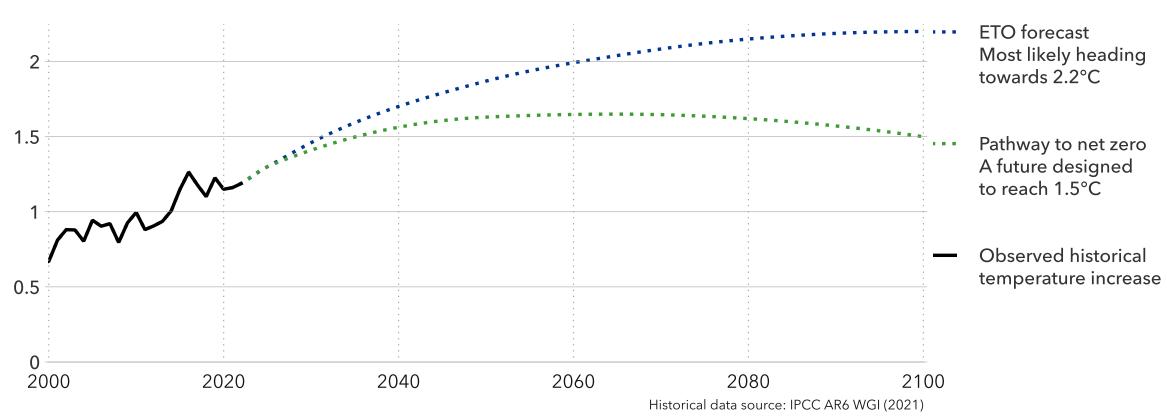
160 years of building trust

Since 1864, we have been guided by our purpose of:

Safeguarding life, property, and the environment

Our vision is to be:

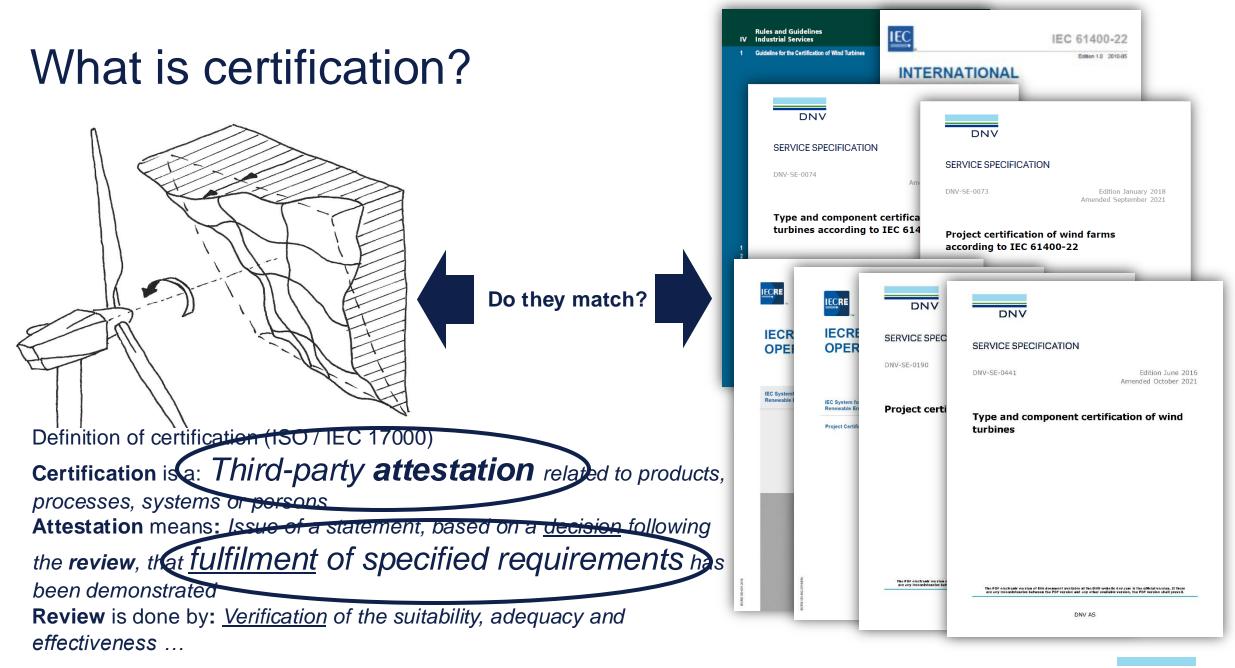
A trusted voice to tackle global transformations

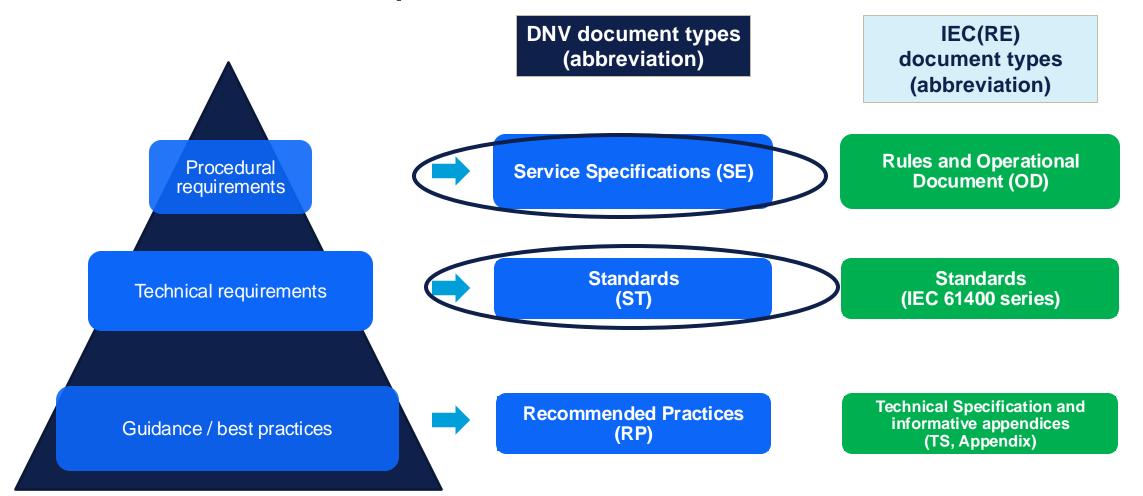


Energy Transition Outlook: The two futures https://www.dnv.com/energy-transition-outlook/

Closing the gap to 1.5°C

Change in global surface temperature relative to 1850-1900

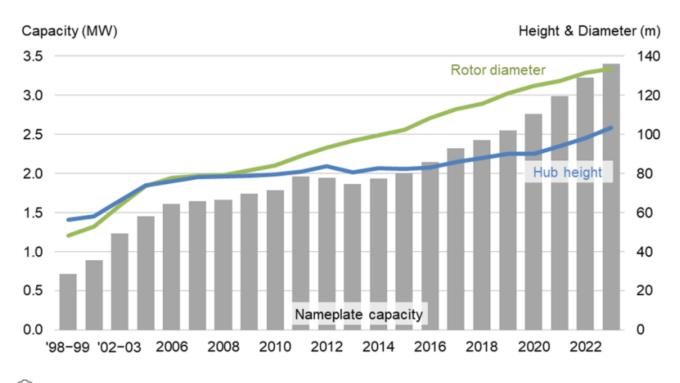

Units: °C

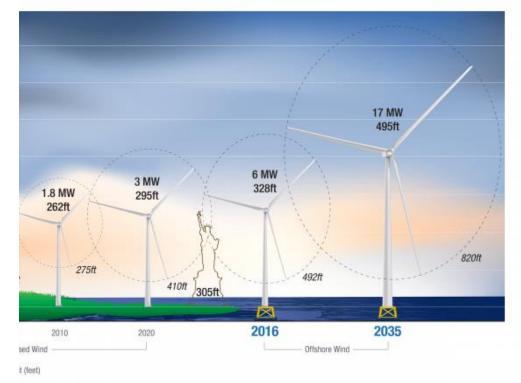


What is Certification?

03 December 2024

DNV document hierarchy Comparison to IEC & IECRE documents





Wind turbines size

03 December 2024

Increase of rotor diameter, hub heigh and rated power

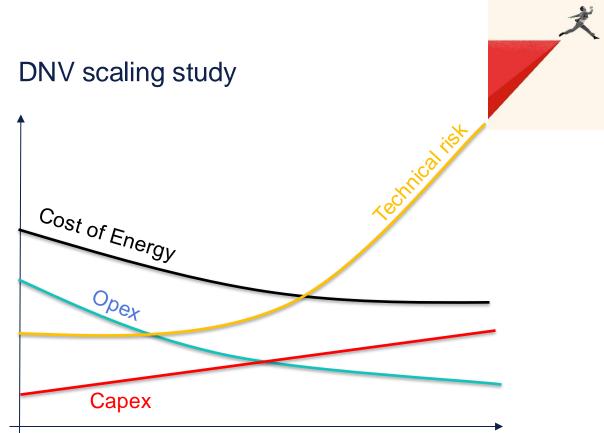
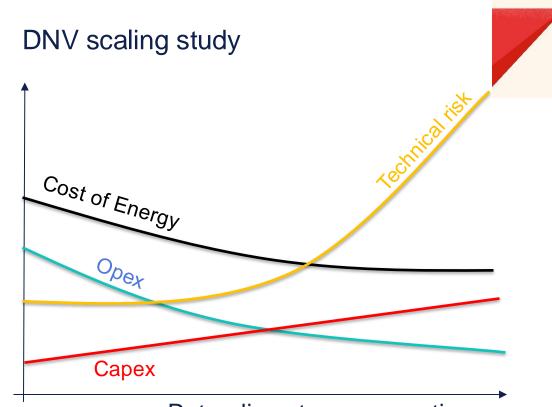

Average turbine hub height, rotor diameter, and nameplate capacity for land-based wind projects from the Land-Based Wind Market Report: 2024 Edition.

Illustration of increasing turbine heights and blades lengths over time.

Data from www.energy.gov

Is there a limit?

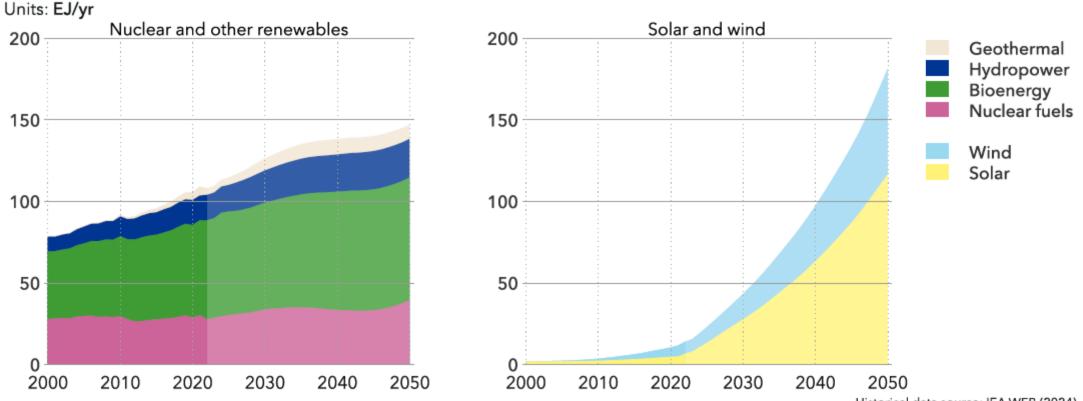

- Transportation
- Manufacturability
- Optimum cost of energy
- Reliability

Rotor diameter, power rating

Is there a limit?

- Transportation
- Manufacturability
- Optimum cost of energy
- Reliability

Rotor diameter, power rating


• One thing is certain. We need to get better on all accounts. DNV's ETO predicts large increase in demand of wind energy.

DNV ETO – Energy Transition Outlook

FIGURE 3.1

World renewables and nuclear primary energy supply

Historical data source: IEA WEB (2024)

Looking back - What has changed in the past years?

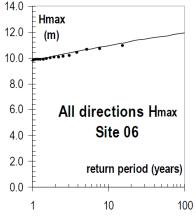
Drivers:

 Growing wind turbine sizes ______ IEC 61400-13 distributed blade loads
Advanced controllers ______ DNV-ST-0376 Blades DNV-ST-0361 Machinery components
Industry experience ______ DNV-ST-0361 Machinery components
IEC 61400-1 EOG -> Turbulence Probabilistic methods

What lies ahead?

03 December 2024

What lies ahead?


- Load effects and load modelling
- Blades
- Cast components
- Other topics

Block Island Wind Farm. Credit: Dennis Schroeder/NREL/flickr/CC BY-NC-ND 2.0

Load effects and load modelling

- Lower rotational speeds means less revolutions in 10-minutes which leads to greater turbulence seed variations.
- Greater risk of aerodynamic instabilities in standby: vortex induced, stall induced
- Ringing phenomenon of offshore support structure
- Larger diameter support structure offshore:
 - Lower Eigen Frequencies may make resonance effects more relevant, e.g. by interacting with wave time periods. The impact from larger waves with long periods could become relevant.
 - Are the wave theories applied to calculate the hydrodynamic forces sufficiently robust?
 - The water contained in the MP could lead to sloshing effects.

Wind turbine blades

- Design for manufacturing
- Requirements for Manufacturing Evaluations will evolve.

Wind turbine blades

- Design for manufacturing
- Requirements for Manufacturing Evaluations will evolve.
- There will be an increased number of **subcontractors** of parts of the blade. Certification requirement does not cover this well today.
- Longer blades are **thinner** structures (relatively). More sensitive to size of imperfections and wrinkles.

Wind turbine blades

Design for manufacturing

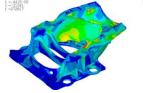
nufacturing Evaluations wi

ased number of subcontra cover this well today.

ner structures (relatively).

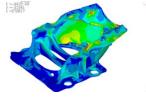
ade. Certification

of imperfections and


- Requirements for transport and installation will evolve. Thinner structures are more sensitive to point contact. Larger and more flexible structures makes for more cumbersome and risky handling.
- **Testing** takes longer because natural frequencies are lower. Time to market requirement will force new innovative ways for testing which needs to be captured in certification.

Cast components

• Material properties: Standards refers to data from tests for components up to 200mm. We see today components 300mm thick, which means that special material and/or component testing is needed. This need will increase.


Cast components

- Material properties: Standards refers to data from tests for components up to 200mm. We see today components 300mm thick, which means that special material and/or component testing is needed. This need will increase.
- FE modelling will change with layered approach with sub-models within sub-models to capture the large scale with fine details.

Cast components

- Material properties: Standards refers to data from tests for components up to 200mm. We see today components 300mm thick, which means that special material and/or component testing is needed. This need will increase.
- FE modelling will change with layered approach with sub-models within sub-models to capture the large scale with fine details.
- Inspections will take longer time. Bigger component takes longer to inspect.

Other topics

- Offshore transport and installation: shortage of vessels needs new innovative methods
- Cables: 80% of insurance claims relates to cables
- Grid code compliance Grid forming
- Electrical:
 - Difficult to fit large components that increases in size with volt.
 - DD PMG generator: manufacturing, transport, testing needs complete nacelle (PT)
- Gearbox: Methods need to adopt
 - Bigger gears, different gear phases affects lubrication
 - Temperature distribution in large gear is different cooling a challenge

Certification – a key role in the future of Wind Energy

- Larger turbines / Larger projects Higher risk
- Certification High value / Low cost

DNV		
TYPE CERT	IFICATE	
Certificate No.: TC-DNV-SE-0074-[ID with 5 digits]-[ree.]	Issued: [YYYYY]-[VM]-[DD]	Valid until: [YYYYY]-[MM]-[DD]
Issued for:		
<wind td="" turbine<=""><td>[vne></td><td></td></wind>	[vne>	
Specified in Annex 1	1900	
Issued to:		
<wind td="" turbine<=""><td>Manufacturer></td><td></td></wind>	Manufacturer>	
< Address line >		
< Address line >		
According to:		
DNV-SE-0074:2021-09 turbines according to I	Type and component co EC 61400-22	ertification of wind
Based on the document:		
FER-TC-DNV-SE-0074-[ID]-[re	v.] Final Evaluation F	Report, dated yyyy-mm-dd
Additional references according	g to above report are given in Ar	nnex 2.
Changes of the system design, are to be approved by DNV.	the production and erection or t	the manufacturer's quality system
<select location="" sll="">, [YYYY]-[NNI]-[DD]</select>		Place, [YYYY]-[MM]-[DD]
For DNV Renewables Certification	DAkks	For DNV Renewables Certification
	Outsche Allurchie ungstelle Oriti 2239-01-00	
[Name of SLL for "Cert. decision"] [Function]	By DAMAS according DIN EN IECOSO 17065 according Contraction Models for products. No according on shall for the fields of certification fined in the certification.	[Name of PM "doing it"] [Function]

Thank you!

Johan Olaison, Head of Section Loads offshore

www.dnv.com

25 DNV © 03 DECEMBER 2024

