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Design Loads on Wind Turbines =

1

IEC 61400-1 prescribes several load cases required for assessing
wind turbine structural integrity

Normal turbulence operating and stand still loads
Extreme turbulence

Operating gusts, stand still gusts

Occurrences of events such as grid loss

High wind shear, direction change

Storms

o ghwWNE

* These load cases are simulated used aeroelastic codes
and the design envelope of turbine components is
determined by these loads.

 The process is stochastic and the bounds of load
variation need to be guantified
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Sources of Design Load Uncertainities
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Inflow Uncertainties

i

e |EC 61400-1 Ed. 3 recommends Mann model or Veers (Kaimal
spectrum) for wind turbulence.

e Parameters of the model (T, L, ae %/3) are usually site
dependent, causing load variations. s

i0” P

e Other inflow variations e |
— Trends (de-trending) -

u]

Spectrum, Sk

— Non-Gaussian/In-homogeneities
— Shear
— Veer
— QGusts

— Storms

Spectrum, Sk
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Example: Variation in inflow parameters
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e Multiple seeds of wind turbulence run at each mean wind speed and

with varying shear, slope and yaw directions

fabss abolute maximum blade root bending moments per seed number
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~20% variation in
extreme loads for
the same load
case with 20
seeds at each
mean wind speed



Influence of turbulence length scale Lon 2

A
il
—alp-

fatigue loads (DTU 10MW turbine, DLC 1.1)
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Effect of different IEC model parameters,
Extreme Loads =

 The Tower base extreme moments increase using the calibrated Mann model
parameters under normal operation.

* This may also be amplified by the turbulence seeds that are used and the
variation in loads due to turbulence seeds needs to also be ascertained.

o MomentMz yaw bearing, design values
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Aerodynamic Uncertainties DTU
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Uncertainities in measured lift coefficients
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airfoil characteristics on wind turbine extreme loads”, Renewable
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Extreme Turbulence Models Vs. Measurements

1. The IEC 61400-1 Ed. 3 uses a Log Normal distribution of turbulence with a std.
deviation of 1.4l ref.

2. Afit of the 50-year extreme turbulence can be made using measurements and
with several probability distributions: Log Normal, Weibull, Normal etc.

3. All of the 50-year return contours typically exceed the IEC ETM model. Is that a
problem for the turbine?

50-year return period contours
of joint distribution of wind and turbulence
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Effect of load control in maintaining load

E o
A
levels under extreme turbulence
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1. Load based control such as IPC leads to satisfactory reliability levels
under ultimate limit states

2. While the controller may be beneficial for operational cases, it may
not have an effect on fault load cases.

3. The designer needs to verify that the uncertainties in the net
response is within the partial safety factor limits.
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Blade design — Validate extreme load level

e 1 year measured data of blade Measured one year load level
root moments taken from Walney :
offshore wind farm. o o
ks it o
e Asubset of 30 extremes per mean i
wind speed bin is extrapolatedto ¢ . N S
the one year probability of 3 - o
exceedance and compared with
the 1 year meaured data,. L . - .
Mean Wind Speed (m/s)
e “A” computed extreme 1 year load
level matches with measured N o
extreme load level. N
" Sl P S M S T
* Boot strapping over all samples in 1.

the one year load set can provide
an expected one year extreme ; ”
load level. . .8
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Fatigue of Offshore Jacket Welded Joints 2=

—

l Effect of wind and wave directionality

i Y L Fatigue analysis should include 8 wave
1 directions for a reliable design.

P T ™. Morison Cj and C,,
estimated by adding the
Dong. Moan, Gao 2011 contribution from all
slender members.

Fatigue lives at the nodes evaluated with SN
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Comparison of ISO Vs. DNV Approaches on Fatigue Lifé

e Estimated stress ranges and number of cycles for position 1 (upper crown heel
point) and mean wind speed of 25m/s.

e The method used in ISO 19902 differs in the number of cycles than the method

used in DNV. The stress ranges using ISO 19902 may be higher for which reason
larger fatigue damage is estimated.
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Variation of Damage at a Joint
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Reliability based design of a Jacket

e Determine lifetime, T, considering uncertainities in the miners rule sum,

load amplitude, stress concentration factors and material properties.
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e Assuming distribution functions for A X, andX,: and DNV specified K and
m parameters, the probability of failure or reliability index is estimated for

different jacket design parameters.

No. ISO 19902 DNV
=10 =3
e Given stress cycles, v, damage, D v D z v D z
] ) 1 168107 [ 1.13 1025 20710 | 005 | 0544
Wall thickness increase, z can be 2 207107 | 0.14 | 0.674
computed to maintain target reliabilty |3 |20310° 048 0864 20310 | 020 | 0.727
level 1 205107 | 0.11 | 0639
evels 5 | 20410 | 008 0600 20410 | 004 | 0513
6 1.87.10° | 0.03 | 0.482
7 1.78.10' | 0.08 0597 17810  |0.03 | 0.501
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Summary

i

e The turbulence model parameters including length scale and Mann
anisotropy parameter affect the tower top and tower base damage
equivalent moments and extreme moments more than blade root loads.

 The blade aerodynamic uncertainty results in extreme load variations
between 10%-20% on the tower top, tower base and blade tip deflection.

e Advanced load alleviation control on a wind turbine, such as individual
pitch control yield both a reduction in the mean of the annual maximum
load distribution and its scatter (COV) which in turn translates into higher
structural reliability level in the face of uncertainty in turbulence.

* Due to the wide variation of fatigue damage predictions on offshore jacket
substructures, a reliability based approach is required to design the jacket
to a satisfactory annual probability of failure and expected lifetime.
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