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“The world is noisy and messy.
You need to deal with the uncertainty”

- Daphne Koller
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What is probabilistic design? – the technical concept

3

x Load, resistance

safety

factor

safety

factor

deterministic
approach

probabilistic
approach



DNV GL © 2017

What is probabilistic design? – the technical concept
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Content Uncertainty Quantification in Wind Turbine Design

the sources of uncertainty

the quantification of uncertainty

– at the component level

– at the system level

the future of uncertainty
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The Sources of Uncertainty
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In principle:

Aleatoric is fixed (unless you alter the 
physical system) 

Two fundamental types of uncertainty in a design process:

- Aleatoric uncertainty - physical (objective) variation

- Epistemic uncertainty - subjective knowledge

Epistemic is reducible (if better knowledge
or more information is available)
Eg. site conditions parameters (AMWS, Iref), aerodynamic 
models

Eg. turbulence, material yield/fatigue strength
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The Sources of Uncertainty
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Uncertainty can reside in both the inputs to a design model, and the 
model itself -

INPUTS OUTPUTS?
? ?
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Uncertainty quantification: some source examples

Blade mass
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For Structural Reliability Analysis (SRA), the model is defined by:

Limit state function:  G(X,Y) = S(X) – L(Y), G < 0: failure

L: load model
S: strength model
X,Y: stochastic parameters

Probability of failure = P[G<0]         calculated using numerical methods
(FORM, SORM, Montecarlo,…)

The Quantification of Uncertainty

9
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The Quantification of Uncertainty
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Step C: Propagation Techniques

A statisticians play-ground!

Numerous methods available1:

- Linear perturbation

- Monte Carlo simulation

- First/Second Order Reliability Methods

- Advanced spectral methods (chaos expansions)

- Gaussian emulators

- etc, etc…

1 e.g., Sudret. B., “Uncertainty propagation and sensitivity analysis in mechanical models – contributions 
to structural reliability and stochastic spectral methods”, doctoral thesis, Université Blaise Pascal, 2008.
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The Quantification of Uncertainty
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An example…

UQ using linear perturbation:     𝑀𝑀 𝑥𝑥 = 𝑀𝑀 𝑥𝑥0 + ∑𝑖𝑖=1𝑀𝑀 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖 𝑥𝑥=𝑥𝑥0

𝑥𝑥𝑖𝑖 − 𝑥𝑥0,𝑖𝑖

Full fatigue and extreme IEC load envelopes run for generic 7MW 
turbine with following model inputs perturbed: 

Parameter Variation Probability Distribution
Tower Young’s Modulus +/- 5% Normal (µ=1.0, σ=0.05)

Tower density +/- 5% Normal (µ=1.0, σ=0.06)
Tower damping factor 0.001, [0.005], 0.01 Lognormal (µ=0.005, σ=0.4)
Blade Young’s Modulus +/- 5% Normal (µ=1.0, σ=0.05)

Blade mass +/- 5% Normal (µ=1.0, σ=0.06)
Mass imbalance +/- 1% Normal (µ=1.0, σ=0.05)

Blade damping factor 0.001, [0.005], 0.01 Lognormal (µ=0.002, σ=0.4)
Blade Xp stiffness +/- 5% Normal (µ=1.0, σ=0.05)
Blade Yp stiffness +/- 5% Normal (µ=1.0, σ=0.05)

Nacelle mass +/- 10% Normal (µ=1.0, σ=0.05)
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The Quantification of Uncertainty

12

An example…

UQ using linear perturbation:     𝑀𝑀 𝑥𝑥 = 𝑀𝑀 𝑥𝑥0 + ∑𝑖𝑖=1𝑀𝑀 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖 𝑥𝑥=𝑥𝑥0

𝑥𝑥𝑖𝑖 − 𝑥𝑥0,𝑖𝑖

Stochastic response of key outputs quantified (expected and COV):

Load response COV generally < 6%, blade root Mz > 15%
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Uncertainty at the component level
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An example…

UQ using Structural Reliability methods (e.g., FORM/SORM):

First/Second Order Reliability Methods used to assess the tail behaviour of 
limit state G-functions. 

G(X,Y) G < 0: failure

X: Load-related parameter
Y: strength-related parameter

Probability of failure = P[G<0]
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Uncertainty at the component level
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An example…

UQ using Structural Reliability methods (e.g., FORM/SORM):

e.g., fatigue analysis of large offshore WTG cast iron mainframe:

Stochastic variables:
Variable Distribution Mean COV S.D.

mrotor Lognormal 1 0.10 0.1

Xdyn Lognormal 1 0.05 0.05

Xexp Lognormal 1 0.05 0.05
Xaero Gumbel 1 0.10 0.10
Xlowcycle Normal 1 0.03 0.03
XRFCC Normal 1 0.05 0.05

Variable Distribution Mean COV S.D.
XMiner’s Lognormal 1 0.30 0.30
Xfatstrength Lognormal 1 0.167 0.167
Xinfcoeff Normal 1 0.02 0.02
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Uncertainty at the component level
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An example…

UQ using Structural Reliability methods (e.g., FORM/SORM):

e.g., fatigue analysis of large offshore WTG cast iron mainframe:

Results:
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 Any input variables relating to the turbine, its installation, and operation within 
the wind farm can be modelled with associated uncertainty – and sub-models!

 Assess the cumulative impact of uncertainty on output variables such as cost of 
energy – and understand uncertainty drivers

 Uncertainty propagation using Montecarlo techniques

7 September 201716
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Application to a 7MW offshore turbine design

Uncertainties used in this study:

 Power curve: Normal distribution, as a function of each wind speed

 Turbine availability: Weibull distribution

 OPEX: LogNormal distribution

 Loads (inputs to turbine & sub-structure CAPEX): Truncated Normal, for each load 
component

Input distributions are then sampled using Monte-carlo algorithm and a distribution 
fitted to the results

17
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Application to 7MW offshore turbine design : results

 Combined, the CoE central estimates are very close 

 Spread shows difference in robustness options – decision maker?
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% contribution to overall variation

Importance factors
Results with no 
uncertainty

Drivetrain type 1 Drivetrain type 2 Drivetrain type 3
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The Future of Uncertainty

i) Improve accuracy of design models (e.g., Bladed, FAST) to reduce bias

ii) Characteristic levels for key design parameters to mitigate under-conservatism

iii) Safety factors for both load and resistance side of design equation

iv) Verify design assumptions with field measurements 

19

How do we (typically) deal with uncertainty in WTG design 
today?
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The Future of Uncertainty
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A more probabilistic approach to design…?

Pros:
- a more rational basis for design and siting
- a facility to reward ‘better’ methods, models & 

monitoring
- a natural vehicle for life-cycle assessment (SIM, 

life extension etc)

Cons:
- difficulty of implementation
- challenge to standardize
- What about the uncertainties we don’t know 

about? 
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Thanks for your attention
GARRAD HASSAN TURBINE ENGINEERING
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