UNCERTAINTY QUANTIFICATION TECHNIQUES IN WIND
TURBINE DESIGN
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“The world is noisy and messy.
You need to deal with the uncertainty”

- Daphne Koller
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What is probabilistic design? — the technical concept
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What is probabilistic design? — the technical concept

standard
approach

probabilistic
approach

X Load, resistance

safety safety
factor factor
S S
\O'bb \0?’6 ?}\& Q/(\&'
\.e'b ’\0§\ ‘}'( 9‘5
\o ol & o>
o S 9\0) x&
N > o °
¢ « 2 »°
) ¢
b fa(x) frx)
Load
Resistance
x
Failure

density, Pgx)

Fe(x) - f(x)

Area =IjumFR|::x) 'fL (S)dx

Annual probability of
failure (Pf) < —~5e-4

¥

"

4 DNV GL © 2017

DNV-GL



Content Uncertainty Quantification in Wind Turbine Design

the sources of uncertainty

the quantification of uncertainty

— at the component level

— at the system level

the future of uncertainty
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The Sources of Uncertainty

Two fundamental types of uncertainty in a design process:
- Aleatoric uncertainty - physical (objective) variation

- Epistemic uncertainty - subjective knowledge

In principle:

Aleatoric is fixed (unless you alter the
physical system)
Eg. turbulence, material yield/fatigue strength

Epistemic is reducible (if better knowledge
or more information is available)

Eg. site conditions parameters (AMWS, Iref), aerodynamic
models
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The Sources of Uncertainty

Uncertainty can reside in both the inputs to a design model, and the
model itself -
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Uncertainty quantification: some source examples
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The Quantification of Uncertainty

Step B Step A Step C
Quantification of Model(s) of the system Uncertainty propagation
sources of uncertainty Assessment criteria
- ™ - 7 B -
Random variables Mechanical model Moments

{ Probability of failure
L ‘ Response PDF
| «<ifam y

For Structural Reliability Analysis (SRA), the model is defined by:

Limit state function: /G(X,Y) = S(X) — L(Y), G <O: failure\

L: load model
S: strength model
X,Y: stochastic parameters

- /

Probability of failure = P[G<0O] ——> calculated using numerical methods
(FORM, SORM, Montecarlo,...)
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The Quantification of Uncertainty

Step C: Propagation Techniques
A statisticians play-ground!

Numerous methods availablel:

- Linear perturbation

- Monte Carlo simulation

- First/Second Order Reliability Methods

- Advanced spectral methods (chaos expansions)
- Gaussian emulators

- etc, etc...

1e.g., Sudret. B., “Uncertainty propagation and sensitivity analysis in mechanical models — contributions
to structural reliability and stochastic spectral methods”, doctoral thesis, Université Blaise Pascal, 2008.
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The Quantification of Uncertainty

An example...

UQ using linear perturbation:

M(x) = M(xo) + X

0
?116_2 i (xi - xo,i)

Full fatigue and extreme IEC load envelopes run for generic 7MW
turbine with following model inputs perturbed:

+/- 5%

+/- 5%
0.001, [0.005], 0.01

+/- 5%

+/- 5%

+/- 1%
0.001, [0.005], 0.01

+/- 5%

+/- 5%

+/- 10%

Normal (u=1.0, 0=0.05)
Normal (u=1.0, 0=0.06)
Lognormal (u=0.005, 6=0.4)
Normal (u=1.0, 0=0.05)
Normal (u=1.0, 0=0.06)
Normal (u=1.0, 0=0.05)
Lognormal (u=0.002, 6=0.4)
Normal (u=1.0, 0=0.05)
Normal (u=1.0, 0=0.05)
Normal (u=1.0, 0=0.05)

e _ Log-Normal distribution, mu=0.002, Cov=0.4
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The Quantification of Uncertainty

An example...

UQ using linear perturbation: M(x) = M(xy) + ¥ oM (x; — x01)

=1 dx; =%,

Stochastic response of key outputs quantified (expected and COV):
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Load response COV generally < 6%, blade root Mz > 15%
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Uncertainty at the component level

An example...
UQ using Structural Reliability methods (e.g., FORM/SORM):

First/Second Order Reliability Methods used to assess the tail behaviour of
limit state G-functions.

11+

G(X,Y) G < 0: failure

X: Load-related parameter
Y: strength-related parameter

Probability of failure = P[G<O0] /

:E[JI]=[|

g{n)=0
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Uncertainty at the component level

An example...

UQ using Structural Reliability methods (e.g., FORM/SORM):

e.qg., fatigue analysis of large offshore WTG cast iron mainframe:

Stochastic variables:
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Uncertainty at the component level

An example...
UQ using Structural Reliability methods (e.g., FORM/SORM):

e.qg., fatigue analysis of large offshore WTG cast iron mainframe:

Results:
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Uncertainty at the system level — Turbine.Architect

= Any input variables relating to the turbine, its installation, and operation within
the wind farm can be modelled with associated uncertainty — and sub-models!

= Assess the cumulative impact of uncertainty on output variables such as cost of
energy — and understand uncertainty drivers

= Uncertainty propagation using Montecarlo techniques
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Application to a 7MW offshore turbine design

Uncertainties used in this study:

= Power curve: Normal distribution, as a function of each wind speed

Turbine availability: Weibull distribution
OPEX: LogNormal distribution

Loads (inputs to turbine & sub-structure CAPEX): Truncated Normal, for each load
component

Input distributions are then sampled using Monte-carlo algorithm and a distribution
fitted to the results e A
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Application to 7MW offshore turbine design : results

= Combined, the CoE central estimates are very close

= Spread shows difference in robustness options — decision maker?

Results with no
uncertainty

Importance factors

farm CoE [Eur/MWhr]

% contribution to overall variation

Drivetrain type 1 Drivetrain type 2 Drivetrain type 3
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The Future of Uncertainty

How do we (typically) deal with uncertainty in WTG design
today?

1) Improve accuracy of design models (e.g., Bladed, FAST) to reduce bias
i) Characteristic levels for key design parameters to mitigate under-conservatism
i) Safety factors for both load and resistance side of design equation

Iv) Verify design assumptions with field measurements
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The Future of Uncertainty

A more probabilistic approach to design...?

Pros:

- a more rational basis for design and siting

- a facility to reward ‘better’ methods, models &
monitoring

- a natural vehicle for life-cycle assessment (SIM,
life extension etc)

Tower fatigue reliability index (beta): Year 25
= ' ! 1

Cons:

- difficulty of implementation

- challenge to standardize

- What about the uncertainties we don’t know
about?

=32

=3.6

Load model uncertainty COV [.]

0.90 0,95 1.00 1.05% 110
Expected site/design load mangin [.]
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Thanks for your attention
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