An Algorithmic Framework for the Multi-Disciplinary Design Optimization of **Wind Turbines**

Carlo L. Bottasso (†,*), Pietro Bortolotti (†), Alessandro Croce (*) (†) Technische Universität München, Germany (*) Politecnico di Milano, Italy

4th Wind Energy Systems Engineering Workshop DTU, Roskilde, Denmark, 13-14 September 2017

Cp-Max Design Environment

First release: 2007, improved and expanded since then

Applications: academic research and industrial blade design

Algorithmic Approach

Monolithic one-shot formulation of the constrained design problem

Issues with the monolithic approach:

- Improving well-posedness
- Improving computational efficiency

Some design parameters have very minor effects on CoE Problem is ill-posed

2D + beam models unable to capture **local 3D effects**

Expensive performance analysis has to be repeated for each change in each design variable Possibly non-smooth load behavior (DLC jump)

Design Optimization of Wind 1

Issues with Monolithic Formulation

2D + beam models unable to capture **local 3D effects**

The Importance of Multi-Level Design

Fine-level verification of:

1) Stress/strain/fatigue/frequency/max tip deflection:

- Constraints violated at first iteration on 3D FEM model
- Modify constraints based on 3D FEM analysis
- Converged at 2nd iteration

2) Buckling:

- Buckling constraint violated at first iteration
- Update skin core thickness
- Update trailing edge reinforcement strip
- Converged at 2nd iteration

Wind Energy Institute

Beyond a Monolithic Formulation

Some design parameters have very minor effects on CoE
Problem is ill-posed

Beyond a Monolithic Formulation

Some design parameters have very minor effects on CoE
Problem is ill-posed

Configurational design parameters erodynamic design Structural design parameters

Solution: exploit weak couplings among optimization variables

Examples:

Structural variables:

ICC (strong), AEP (weak)

Aerodynamic variables, for given rotor radius & solidity and blade thickness & tapering:

AEP (strong), ICC (weak)

(Refs:

- P. Bortolotti et al., Wind Energy, 2017;
- P. Bortolotti et al., Wind Energ. Sci., 2016;
- C.L. Bottasso et al., Multibody Syst. Dyn., 2015)

Improving Computational Efficiency

Expensive performance analysis has to be repeated for each change in each design variable Possibly non-smooth load behavior (DLC jump)

Additional Features: Composite Optimization

Idea:

- Define a parametric composite material model (mechanical properties vs. cost)
- Identify the best material for each component within the model

Result:

- Wind turbine designer: pick closest existing material within market products
- Material designer: design new material with optimal properties

Example: INNWIND.EU 10 MW

Spar Caps Laminate
Redesign of spar caps laminate
Optimum is between H−GFRP and CFRP

Redesign of the **shell skin laminate**Optimum is between Bx-GFRP and Tx-GFRP ▼

Combined optimum: Blade mass -9.3%, blade cost -2.9%

Additional Features: Free-Form Optimization

Design airfoils together with blade:

- Bezier airfoil parameterization
- Airfoil aerodynamics by Xfoil + Viterna extrapolation

Additional constraints: C₁ max (margin to stall), geometry

Applications: Passive Load Alleviation

Full-span passive load mitigation:

Loaded structure deforms in order to self-reduce loading

Potential advantages: no actuators, no moving parts, no sensors

Application: IEA Task 37 3.35MW wind turbine

- 1. Each passive technology individually
- 2. Integrated passive technologies: larger rotor at similar loading

Applications: Passive Load Alleviation

S-BTC & F-BTC: significant DEL and ultimate load benefits

O-BTC: limited benefits due to large spar caps and pronounced blade slenderness

Applications: Passive Load Alleviation

Optimal combination of sweep and fiber rotation (F-S-BTC): larger rotor at similar loading

Constraints

Constraints on ultimate loads							
Load component	FBR	EBR	TBR	ThS	CS		
Value	13.51 MNm	6.84 MNm	0.29 MNm	0.834 MN	8.81 MNm		
Enforced	yes	yes	no	yes	yes		
Load component	RoITT	NodTT	FATT	SSTT			
Value	4.69 MNm	7.42 MNm	0.75 MN	0.48 MN			
Enforced	yes	yes	yes	yes			
Load component	onstraint on fatig	EBR	TBR	ThS	CS		
Value	6.61 MNm	13.34 MNm	0.08 MNm	0.26 MN	6.02 MNm		
Enforced	yes	yes	no	yes	yes		
Load component	RoITT	NodTT	FATT	SSTT			
Value	1.45 MNm	6.10 MNm	0.36 MN	0.27 MN			
Enforced	no	yes	yes	yes			

Results

Data	Baseline	F-S-BTC Optimum	Difference
Rotor diameter	130.0 m	136.0 m	+4.6%
Rotor cone angle	3.0 deg	8.0 deg	+166.7%
Nacelle uptilt angle	5.0 deg	6.0 deg	+20.0%
Blade mass	17,525 kg	14,560 kg	-16.9%
Blade cost	127.9 k\$	126.2 k\$	-1.3%
Tower mass	365 ton	292 ton	+20.0%
Tower cost	548.5 k\$	438.2 k\$	+20.1%
Aerodynamic AEP	15.01 GWh	15.40 GWh	+2.6%
Electrical AEP	13.96 GWh	14.32 GWh	+2.6%
ICC	3,885.2 k\$	3,850.9 k\$	-0.9%
CoE	42.00 \$/MWh	40.82 \$/MWh	-2.8%

New regulation in region II to limit AEP loss (variable fine pitch setting)

Some References

P. Bortolotti, C.L. Bottasso, A. Croce, and L. Sartori: Integration of multiple passive load mitigation technologies by automated design optimization — The case study of a medium-size onshore wind turbine. Wind Energy, under review, 2017

P. Bortolotti, A. Croce, and C.L. Bottasso: Combined preliminary-detailed design of wind turbines. Wind Energ. Sci., 1, 1-18, doi:10.5194/wes-1-1-2016, 2016

C.L. Bottasso, P. Bortolotti, A. Croce, and F. Gualdoni: Integrated Aero-Structural Optimization of Wind Turbine Rotors. Multibody Syst. Dyn., doi: 10.1007/s11044-015-9488-1, 2015

C.L. Bottasso, F. Campagnolo, A. Croce, S. Dilli, F. Gualdoni, M.B. Nielsen: Structural Optimization of Wind Turbine Rotor Blades by Multi-Level Sectional/Multibody/3DFEM Analysis, Multibody System Dynamics, 32:87–116, 2014

C.L. Bottasso, F. Campagnolo, C. Tibaldi: Optimization-Based Study of Bend-Twist Coupled Rotor Blades for Passive and Integrated Passive/Active Load Alleviation, Wind Energy, 16:1149-1166, 2013

C.L. Bottasso, A. Croce, F. Campagnolo: Multi-Disciplinary Constrained Optimization of Wind Turbines, Multibody System Dynamics, 27:21-53, 2012

O.A. Bauchau, A. Epple, C.L. Bottasso: Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations, ASME Journal of Computational and Nonlinear Dynamics, 4:021007, 2009

- P. Bortolotti, G. Adolphs, C.L. Bottasso: A methodology to guide the selection of composite materials in a wind turbine rotor blade design process, J. Phys.: Conf. Ser. 753, 2016
- A. Croce, L. Sartori, M.S. Lunghini, L. Clozza, P. Bortolotti, C.L. Bottasso: Lightweight rotor design by optimal spar cap offset, J. Phys.: Conf. Ser. 753, 2016
- L. Sartori, P. Bortolotti, A. Croce, and C.L. Bottasso: Integration of prebend optimization in a holistic wind turbine design tool, J. Phys.: Conf. Ser. 753, 2016

Conclusions

- Strong couplings between aero and structural design variables
- Multi-level approach to marry high fidelity and computational effort
- Nested iterated sub-optimizations of original monolithic problem to improve well-posedness, efficiency and robustness

Open issues/outlook:

- CoE: solutions are highly sensitive to cost model, need detailed reliable models that truly account for all significant effects, problem partially alleviated by Pareto solutions (in progress)
- Include/improve physics-based sub-system models
- Uncertainties everywhere (aero, structure, wind, ...), move away from deterministic design (but what about certification standards?),
 - currently working on UQ and robust design

