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Cp-Max Design Environment

First release: 2007, improved and expanded since then
Applications: academic research and industrial blade design

Cost:
AEP
Aerodynamic parameters

Cost:
Initial Capital Cost (ICC)
Structural parameters
(rotor and tower)

Cost:
Physics-based CoE
Parameters:
Aerodynamic and structural

Controls:
model-based 
(self-adjusting  to 
changing design)
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Algorithmic Approach

Improving accuracy by multi-level analysis

Monolithic one-shot formulation of the 
constrained design problem

Issues with the monolithic approach:
- Improving well-posedness

- Improving computational efficiency



2D FEM sectional model

Blade and tower 
beam models

Structural design parameters

Aeroservoelastic multibody 
model

Aerodynamic design 
parameters

Constraints:
• Max tip deflection
• Ultimate & fatigue loads
• Natural frequencies
• Buckling
• Manufacturing constraints
• Geometric constraints
• Noise
• …

Optimizer

min CoE
subject to constraints 

Control  synthesis

Load & performance analysis: 
• DLCs
• AEP
• Campbell
• Noise
• …

CoE model

Configurational design
parameters

Sub-system models
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Issues with Monolithic Formulation

Some design parameters have 
very minor effects on CoE

Problem is ill-posed

Expensive performance analysis has to be 
repeated for each change in each design variable
Possibly non-smooth load behavior (DLC jump)

2D + beam models unable 
to capture local 3D effects
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Issues with Monolithic Formulation

2D + beam models unable 
to capture local 3D effects



Automatic 3D CAD 
generation

“Fine” level: 3D FEM

“Coarse” level: 2D FEM & beam models

Analyses:
- Max tip deflection
- Max stress/strain
- Fatigue
- Buckling

Verification of design constraints
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Automatic 3D FEM meshing Root 3D CAD modelJoint & laminate analysis
- Bolt preload calculation
- Max stress/strain
- Fatigue

Automatic 3D FEM meshing

(Ref.: C.L. Bottasso et al., Multibody 
System Dynamics, 2014)
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Iterated until convergence 
(typically 1-2 iterations)

A similar approach could be 
used also for the detailed
aerodynamic blade design
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1) Stress/strain/fatigue/frequency/max tip deflection:
• Constraints violated at first iteration on 3D FEM model
• Modify constraints based on 3D FEM analysis
• Converged at 2nd iteration

2) Buckling:
• Buckling constraint violated at first iteration
• Update skin core thickness
• Update trailing edge reinforcement strip 
• Converged at 2nd iteration

The Importance of Multi-Level Design

Peak stress on initial 
model

ITERATION 1
ITERATION 0
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Fatigue damage 
constraint satisfied

ITERATION 1
ITERATION 0
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Increased trailing 
edge reinforcement

ITERATION 1
ITERATION 0
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Increased skin 
core thickness
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Beyond a Monolithic Formulation

Some design parameters have 
very minor effects on CoE

Problem is ill-posed
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Beyond a Monolithic Formulation

Some design parameters have 
very minor effects on CoE

Problem is ill-posed

Solution: exploit weak couplings among 
optimization variables

Examples:
Structural variables: 

ICC (strong), AEP (weak)
Aerodynamic variables, for given rotor 
radius & solidity and blade thickness & 
tapering:

AEP (strong), ICC (weak)

(Refs:
P. Bortolotti et al., Wind Energy, 2017;
P. Bortolotti et al., Wind Energ. Sci., 2016;
C.L. Bottasso et al., Multibody Syst. Dyn., 2015)



Aerodynamic Optimization: max AEP
Opt. variables: chord and twist distributions, 
airfoil positions
Constraints: max chord, max blade tip speed, 
σc, τc, σt, τt

Structural Optimization: min ICC
Opt. variables: thickness of blade structural 
components, tower wall thickness and 
diameters, composite material parameters 
Constraints: stress, strain, fatigue damage for 
blade and tower, max tip displacement, natural 
frequencies

CoE model

Macro Optimization: min CoE
Opt. variables: Rotor diameter, turbine height, cone, uptilt, blade shape 
parameters σc, τc, σt, τt
Constraints: max loads, max turbine height

Control  synthesis

Load calculation

3D FEM verification

Opt. variables CoE + constraints

Until converged
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Acoustic analysis

Pre-bend optimization 

Exploit weak couplings among 
optimization variables
Original problem formulated as well-
posed nested sub-optimizations
Each sub-optimization can be used 
independently (e.g., pure aerodynamic 
or structural optimizations)
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Acoustic analysis

Pre-bend optimization 
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Acoustic analysis

Pre-bend optimization 

External iteration ensures capturing of 
all couplings and consistency of results
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Improving Computational Efficiency

Expensive performance analysis has to be 
repeated for each change in each design variable
Possibly non-smooth load behavior (DLC jump)
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Acoustic analysis

Pre-bend optimization 

Temporary load freezing within structural 
optimization
Typically converges in 2-3 iterations
As long as it converges, freezing will not affect 
solution accuracy

(Ref: C.L. Bottasso et al., Multibody Syst. Dyn., 2012, 2014, 2015)

Load update to ensure consistency
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Additional Features: 

Composite Optimization 
Idea: 
• Define a parametric composite material model (mechanical properties vs. cost)
• Identify the best material for each component within the model
Result:
• Wind turbine designer: pick closest existing material within market products
• Material designer: design new material with optimal properties
Example: INNWIND.EU 10 MW

▲
Redesign of spar caps laminate
Optimum is between H-GFRP and CFRP

H-GFRP Optimized F-CFRP

Spar Caps Laminate
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Redesign of the shell skin laminate
Optimum is between Bx-GFRP and Tx-GFRP ▼

Bx-GFRP Optimized
Shell Skin Laminate
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Combined optimum: Blade mass -9.3%, blade cost -2.9%
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Additional Features: 

Free-Form Optimization
Design airfoils together with blade:

• Bezier airfoil parameterization
• Airfoil aerodynamics by Xfoil + Viterna extrapolation

Additional constraints: CL max (margin to stall), geometry 
(not yet implemented in 
latest Cp-Max release)

Automatic appearance 
of flatback airfoil!

(Ref. Bottasso et al., J. Phys: Conf. Series, 524, 2014, SciTech 2015)
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Applications: Passive Load Alleviation

Full-span passive load mitigation: 
Loaded structure deforms in order to self-reduce loading

Potential advantages: no actuators, no moving parts, no sensors

Application: IEA Task 37 3.35MW wind turbine
1. Each passive technology individually
2. Integrated passive technologies: larger rotor at similar loading

Composite fiber rotation (F-BTC) Offsetting of spars (O-BTC)Aerodynamic sweeping (S-BTC)

(Details in Bortolotti et al., Wind Energy, 2017)
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Applications: Passive Load Alleviation

S-BTC & F-BTC: significant DEL and ultimate 
load benefits

O-BTC: limited benefits due to large spar 
caps and pronounced blade slenderness

(Details in Bortolotti et al., Wind Energy, 2017)
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larger rotor at similar loading

Constraints Results

New regulation in region II to limit AEP loss (variable fine pitch setting)

Applications: Passive Load Alleviation

(Details in Bortolotti et al., Wind Energy, 2017)
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• Multi-level approach to marry high fidelity and computational effort 

• Nested iterated sub-optimizations of original monolithic problem to 
improve well-posedness, efficiency and robustness

Open issues/outlook:
• CoE: solutions are highly sensitive to cost model, need detailed 

reliable models that truly account for all significant effects, problem 
partially alleviated by Pareto solutions (in progress)

• Include/improve physics-based sub-system models
• Uncertainties everywhere (aero, structure, wind, …), move away from 

deterministic design (but what about certification standards?), 
currently working on UQ 
and robust design

Conclusions

PD
F

Input

PD
F

Output

Simulation
model 


	�An Algorithmic Framework for the �Multi-Disciplinary Design Optimization of Wind Turbines��Carlo L. Bottasso (†,*), Pietro Bortolotti (†), Alessandro Croce (*)�(†) Technische Universität München, Germany�(*) Politecnico di Milano, Italy������������������4th Wind Energy Systems Engineering Workshop �DTU, Roskilde, Denmark,13-14 September 2017��
	Cp-Max Design Environment
	Algorithmic Approach
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	The Importance of Multi-Level Design
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Additional Features: �Composite Optimization 
	Additional Features: �Free-Form Optimization
	Applications: Passive Load Alleviation
	Applications: Passive Load Alleviation
	Applications: Passive Load Alleviation
	Some References
	Conclusions

