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Using uncoupled models (sequential optimization)

can prevent you from finding peak performance
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Coupled Multi-fidelity Models



Highly synergistic designs require considering

of coupling early in the design cycle

@ Aerodynamic couplings often require
detailed flow-field information — CFD

@ Structural couplings can require
detailed stress information — FEM

@ It is too expensive to analyze everything with high fidelity,
so we build multi-fidelity models
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Multi-fidelity: a single system model

that includes analyses at different levels of fidelity

“Fidelity” can mean a range of things:
compute cost, number of inputs, mesh size, parallel vs serial ...
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When we use CFD or FEA, the # of design variables

and the compute cost grows considerably

@ Gradient based optimization effectively
navigates large design spaces

@ Analytic derivatives are the most
efficient way to compute gradients
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Analytic Derivatives lower the

compute cost of optimizations
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We want to design complex systems
with coupled multi-fidelity models,

so we use gradient based optimization
with analytic derivatives

(Unfortunately this is easier said than done)



OpenMDAO can efficiently solve for analytic

multi-disciplinary derivatives in parallel on HPC systems

@ Runs in parallel with MPI/PETSc on HPC resources

@ Uses a distributed memory design to work with sparse distributed
data

@ Supports matrix-free linear solvers for converging the coupled
multidisciplinary derivatives
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Aerostructural wind turbine blade design

with 10 engineering disciplines

Agro-structural design required
significant precurve in the jig
shape
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10 engineering disciplines with multi-fidelity
aerostructural coupling in the rotor design
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Optimization was 5x faster with analytic derivatives

Finite-Difference Analytic
Objective (COE in ¢/kWh) 5.8045 5.8042
Max Constraint Violation 2.62 x 107° 1.81 x 107°
# Major Iterations 143 113
Time Per Major Iteration (minutes) 227 0.59
Total Run Time (hours) 5.43 1.11
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An optimal control problem for a satellite design with

25000 variables was solved in 8 hours on 6 CPUs

| Ground station located at
Memurda Base, Antarctics

[Satellite was launched into a polar erbit |
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Turboelectric aircraft concept used boundary layer
ingestion (BLI) get 12% mission fuel burn reduction

2x 1925 hp generators
(90% transmission efficiency)

Turboelectric propulsion system has an electric BLI propulsor
powered by generators mounted on the under-wing turbofans
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A fully coupled model is crucial for capturing the correct

system performance
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The optimized configuration produced a significantly
different nacelle geometry than the baseline

Optimized design

Initial design
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@ We increasingly need to built coupled multi-fidelity models to
accurately model coupled systems

o Gradient based optimization with analytic derivatives
provides a tool to navigate the resulting larger design spaces,
but posses implementation challenges

@ OpenMDAO simplifies the implementation
and lets you solve big multi-fidelity problems efficiently
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