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Direct Optimization
with Higher Fidelity Analysis
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Direct Optimization with Higher Fidelity Analysis
Multidisciplinary Design Optimization of Wind Turbines

• Trends show wind turbines are getting larger

• Higher turbines better winds
• Improved economies of scale (e.g. offshore)

• Future growth will require advanced designs

• Bend-twist coupling, curved blades, active load alleviation,
winglets, coning, etc.

• Multidisciplinary Design Optimization (MDO)

• Simultaneously optimize multiple disciplines
(e.g. aero, structural, control, etc.)

• Optimization based on holistic metrics
(e.g. cost of electricity)

• Wind turbine design constrained by unsteady loads (i.e.
strong gusts and fatigue)
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Medium Fidelity Analysis Tools
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Direct Optimization with Higher Fidelity Analysis
Analysis Tools

• Conventional preliminary design tools

• Blade Element Momentum Theory and Linear beam theory
• Fast and efficient, but lacks the fidelity required by advanced designs

• High fidelity analysis

• Grid-based CFD and Shell and Brick based FEM
• Excellent fidelity, very expensive for optimization

• Need medium fidelity analysis (improved fidelity, still efficient)

• Vortex Dynamics (VD)
• Nonlinear beam theory (GEBT)
• Anisotropic Cross Section Analysis (VABS)
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Direct Optimization with Higher Fidelity Analysis
Aero-elastic Optimization with Conventional VD
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Figure from Lawton and Crawford 2015

• Aeroelastic model with Conventional VD,
GEBT and VABS

• Obtained optimization results with

• Pure aerodynamic
• Aero-elastic with fixed wake

• Failed to obtain aeroelastic results with free
wake simulations

• Pure vortex methods are fundamentally
chaotic

• Numerical noise spoils the gradients and
optimization

• Conventional VD not suitable for
aero-elastic optimization

Michael K. McWilliam, Stephen Lawton, and Curran Crawford. “Towards a framework for aero-elastic multidisciplinary design
optimization of horizontal axis wind turbines” In AIAA Annual Sciences Meeting, 2013
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The Finite Element Based Vortex Dynamics
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Direct Optimization with Higher Fidelity Analysis
FEM Parameterization of the Wake

• Vortex position in the wake defined by
interpolating splines:

x =
∑

j

ηj(τ)Xxj ẋ =
∑

j

η̇j(τ)Xxj

• Can have an arbitrary number of influence
elements and control points

• Can add more influence elements to
improve accuracy

• Can remove control points to accelerate
calculations

Basis Section

Points

Influencing element

Node for an influencing element
where x =

∑

j
ηj(τ )Xxj

(Biot Savart law)

defined by the function ηj(τ )

defines Xxj
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Direct Optimization with Higher Fidelity Analysis
FEM Solution Algorithm

Lifting Line Elements (Γi → RΓi)

Control Points (Xxj → Rxj)

Influence

Element

Basis
Section

Turbine Blade

• Convergence defined by a residual:

rx ≡ ẋ + Ω× (x− x0)− u∞ − uγ

• Mapped to control points through Galerkin
projection:

Rxj =

τf∫

τ0

ζj(τ)rx(τ)dτ

• Solved with a Newton iteration

• Adaptive relaxation required to get reliable
convergence

• See Video for example

• Best results with a far-wake model

• Avoids singularities
• Eliminates wake-truncation errors
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Optimization Results
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Direct Optimization with Higher Fidelity Analysis
Optimization Convergence with FEM-Based VD
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• Used analytic gradients

• Explicit VD residual definition predicts
changes in state

• Tight optimization tolerances

• Small changes avoid singularities
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Direct Optimization with Higher Fidelity Analysis
Optimization with FEM-Based VD

Aerodynamic Only Optimization:
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Aero-elastic Optimization:
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• Aeroelastic optimization created more efficient designs
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Multi-fidelity Design Optimization
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Multi-fidelity Design Optimization
The Multi-Fidelity concept

• Uses both a high fidelity and low fidelity model

• Less expensive by using fewer high fidelity results
• Reduces surrogate error with low-fidelity results

• Fidelity could be based on:

• Formulation (e.g. RANS vs. BEM)
• Grid resolution (e.g. fine vs. course)
• Type of simulation (e.g. unsteady vs. steady)
• etc.

• Low fidelity just needs to show similar trends
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The AMMF Algorithm
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Multi-fidelity Design Optimization
The AMMF Algorithm

Calculate fl, fh, ∇fl and ∇fh

Build/update correction model β(x)

Update trust region ∆:
expand if |f̃ − fh| is small
constrict if |f̃ − fh| is large

Calculate fl

Calculate f̃ = β(x)fl

Use optimization to find next design x

Calculate fl, fh, ∇fl and ∇fh

Initial design

Exit if converged

• High fidelity used for accuracy

• Low fidelity is used for speed

• Correction for first order
consistency

f̃(x) = fl(x) + β(x)

β(x) = fh0 − fl0
+ (∇fh0 −∇fl0) ∆x

• Trust-region for robustness

17 DTU Wind Energy Higher Fidelity Optimization Jan. 19, 2017



Multi-fidelity Design Optimization
The Trust Region Algorithm

• The trust-region defines the region where we
can “trust” our approximation

• Constrained to stay within the trust-region

• Re-centered at every major iteration

• Only when an improved is found

• Trust region is resized

• If the approximation gives excellent
agreement then it grows

• If the trust region gives poor agreement
then it shrinks

• If the inner optimization fails to find an
improvement, it will repeat within the
smaller trust region

• Similar to the line search algorithm

• Otherwise maintain the trust region
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Multi-fidelity Design Optimization
Constraints in the AMMF Algorithm

• Constraints are corrected in the same way

• The constraints are present in the low fidelity optimization

• Constraints receive special treatment in Approximation and Model Management
Framework (AMMF)

• First an estimated Lagrangian is calculated

Φ = f + λ̃e · |c|+ λ̃i ·max(0,−ci)

• λ̃ are the Lagrange multipliers estimated from previous iterates.
• λ̃ is specified for the first iteration

• New iterate only accepted when Φi < Φi−1

• Trust region is expanded or contracted based on M :

M =
Φi−1 − Φi

Φi−1 − Φ̃i

• Trust region expanded if M is close to 1
• Trust region contracts if M is far from 1
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Multi-fidelity Structural Design Optimization
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Multi-fidelity Design Optimization
Summary of Low Fidelity Tools

Position EA EIx EIy GJ

0.05 0.0 2.6 -4.9 -5.4
0.15 0.5 1.1 -3.0 -0.8
0.25 -0.4 -1.8 2.1 -1.4
0.35 -0.7 -2.6 1.7 -3.1
0.45 -0.7 -3.1 1.0 -5.5
0.55 -0.9 -3.1 -0.3 -7.7
0.65 -0.8 -2.9 -1.7 -9.3
0.75 -0.6 -2.2 -2.2 -9.2
0.85 -0.6 -1.7 -3.5 -5.9
0.95 -0.1 -1.2 -2.0 -2.0

Table: Percent Error with BECAS

• Low fidelity cross section tool

• Thin-walled cross section
assumption

• Rigid cross section
(Euler-Bernoulli)

• Classic laminate theory
• Written in C++
• Python bindings with Swig
• Will have analytic gradients
• Within 10% compared to BECAS

• High fidelity cross section tool

• Based on BECAS
• BECAS uses an FE formulation
• Solves the warping field
• Gives fully populate matrix

21 DTU Wind Energy Higher Fidelity Optimization Jan. 19, 2017



Multi-fidelity Design Optimization
Summary of Low Fidelity Tools

Operation Calculation time [s]

Linear Beam Model 0.0035
LF cross section model 0.0074
BECAS 200.1866

Table: Speed Comparison of Low Fidelity Tools

• Linear Beam Model

• C++ code from my PhD
• Analytic gradients wrt.

• Positions
• Orientation
• Cross section properties
• Applied forces

• Solves equivalent forces for given
deflection

• Speed comparison:

• With python bindings
• Calculation for whole blade
• 19 elements
• DTU 10MW
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Multi-fidelity Design Optimization
Problem Description

• Minimize DTU 10MW Blade Mass

• Varying spar cap thickness

• Subject to:

• Tip deflection constraint

• Analysis based on the equivalent static problem (i.e. Frozen loads)

• Compared pure BECAS, pure CLT and AMMF

• Looked at various AMMF configurations:

• Additive vs. Multiplicative corrections
• Trust region size
• Initial Lagrange multiplier (i.e. Penalty parameter)
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Multi-fidelity Design Optimization
Optimization Results

• Low fidelity model is not
conservative

• Will produce infeasible
solutions

• AMMF reproduced the BECAS
solution

• AMMF had better
constraint resolution

• AMMF gives accurate
corrections

• Additive vs multiplicative
corrections:

• Gives similar solutions
• Similar performance
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Multi-fidelity Design Optimization
Optimization Convergence
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• AMMF converges 12 times
faster

• Just 2 major iterations

• AMMF had smoother
convergence

• Only 1 iteration with
constraint violation

• BECAS optimization
ended due to maximum
iterations

• Low fidelity models more
suitable for optimization
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Multi-fidelity Design Optimization
AMMF Robustness

AMMF guards against poor approximations

• Unconstrained has all
protections disabled

• Large violations
• Fails to converge

• Trust region is most robust

• Same progress as ideal
configuration

• Large penalties work without
trust region

• No large violations
• More searching
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Closing Statements
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Closing Statements
Conclusions

• Higher fidelity in direct optimization is challenging but possible

• Underlying tools may be non-smooth
• Tools may need to be re-written or re-formulated (optimization proof)
• Developed a totally new formulation for vortex methods based on FEM
• Successfully obtained aero-elastic optimization results with vortex methods

• Higher fidelity through multi-fidelity design optimization is promising

• Effective when low fidelity gives similar trends much faster
• Achieved a 12 times speed up using multi-fidelity techniques
• The AMMF algorithm is robust in handling errors
• Ongoing case studies focusing on difficult problems
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Closing Statements
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Closing Statements
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