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What?

 Time domain simulation of a wind farm as a power station 

 Capability to represent:

– All external environmental conditions across the site: wind, wave, current, etc.

– Flow within the wind farm array accounting for atmospheric and wake effects

– Performance, loading and control of each individual turbine + support structure

– Electrical interactions between turbines and with the grid

– Control of the wind power station as a whole
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Why?

 Improve wind farm design & layout
– More detailed understanding of terrain, wake & electrical interaction effects

 Development and testing of wind farm controls
– Minimise wake interactions (induction control, wake steering, sector management)

– Provide grid ancillary services (curtailment, ramp rate limits, delta control, frequency 
response)

– Optimise supervisory control at wind farm level (high wind shutdown / rampdown, low 
voltage ride-through)

 Optimisation of O&M strategies
– Understanding conditions experienced by individual turbines

– Planning of scheduled maintenance
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How?

×Not one tool based on one simulation model, but:

Framework or toolbox within which different models can be linked together into a 
simulation platform tailored to any specific problem:
 A database structure containing all the fundamental parameters relevant to the wind power station 
 A set of modelling tools of different levels of sophistication for addressing problems of different complexity 
 A framework containing interfaces to the database and the modelling tools
 A user interface and workflow management system
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Physical components

A wind power station is a complex combination of coupled physical systems that 
dictate how the entire power station behaves: 

– Topographical flow effects (onshore sites)

– Metocean conditions (offshore sites) 

– Atmospheric stability and turbulence 

– Dynamic wind turbines with individual controllers 

– Turbine wake effects (affected by atmospheric turbulence) 

– Wind farm electrical systems and interconnections

– Grid connection, and interaction with the external electrical network 
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Constraints

 Economic revenues:
– From electricity production

– From providing grid ancillary services

 Operational costs / loss of revenue
– Operation and maintenance costs

– Environmental conditions imposed on operation (e.g. noise constraints)

– Curtailment demands imposed by network operators 
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Examples of typical timescales

 Timesteps:
<1ms: electrical transients

~10ms: turbine control & loads, 
electromechanical interactions

~1 sec: turbine supervisory control and 
wake dynamics

1-10 min: farm level control

10-60 min: energy trading & forecasting

~1 day: O&M planning

∞ (steady-state): Farm layout design
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 Length of simulations:
~1s: electrical transients

~1 min: grid interaction: LVRT, frequency 
response

10-60 min: farm control for specific wind 
conditions, including ancillary services

1hr – 1 year: supervisory control

1 week – 25 years: O&M strategy
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Wind field modelling
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 Temporal variation:
– Constant conditions, e.g. for simple simulations up to 10 minutes 

– Low frequency variations, e.g. for some supervisory controls, energy trading, etc.

– Turbulence: 10-60 minute simulations with turbine & wake dynamics

– Turbulence + low frequencies: supervisory / farm control with turbine & wake dynamics

 Spatial variation:
– None

– Steady-state: Terrain / topographical effects

– Dynamic: Correlation of temporal variations across the wind farm
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Pre-existing tools, further development and links
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Bladed (single turbine)

Detailed turbine dynamics and 
control, turbulent wind

Generates fatigue loads, power 
etc.

(0.01s for 10 minutes)

Dynamic wind farm simulator 
Turbine model as LongSim

Wind field correlated across wind farm 
(low frequency + turbulence)

Wakes with wake dynamics, meandering

Wind farm control

(1s for hours – weeks – years)

WindFarmer (wind farm)

Terrain & wakes

Energy calculation

Layout optimisation

(steady state)

CFD (wind farm)

Terrain & wakes

RANS

(steady state)

Set-point optimiser (wind farm)

Power (delta) set-point and yaw offsets

Pre-calculated fatigue look-up

(steady state)

LongSim (single turbine )

Full turbine control with simplified 
dynamics, pre-calculated fatigue look-up

Low-frequency wind plus turbulence

(1s for hours – weeks – years)

Cost model
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Dynamic wind farm simulator: 9-turbine example
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One-hour simulation took 4 
minutes on a lap-top (using one 
core)

• Contour plot of wind speed

• Turbines show yaw position 
and local wind vector

Look out for:
• Turbulence advecting and evolving

• Wakes developing and meandering

• Wind direction changing (SSE to SSW)

• Turbine yaw control follows
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Dynamic wind farm simulator: Horns Rev 1 (80 turbines)
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• Low wind speed

• Rapid direction change -
~90º in a few minutes

• Direction change 
propagates through the 
farm at mean wind speed

• Faster than real time 
running on a single core
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Toolbox vision – other interconnections

 More direct integration
– CFD for higher-fidelity terrain & wake flow calculations

– Site layout optimisation

– Turbine aeroelastic model (Bladed)

– Cost models

 Other components
– Electrical models such as DigSILENT, PSCAD etc.

– Grid operational models (e.g. KERMIT)

– O&M planning models

– Market models

– Forecasting

– Etc.
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Example application: control of wind farm wakes
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• Reduced power!
• increased loading!

Switch this turbine off?

Or reduce the power 
set-point of this one?

Or maybe yaw the 
turbine slightly to steer 
its wake away from the 

next turbine?

1. What is the optimum* distribution of power and yaw 
set-points for all the turbines, in this wind condition?

2. How can we maintain optimum* performance in 
dynamically changing circumstances?

* Optimum has to be defined –
depends on energy and loading
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Control of wind farm wakes: Process

 Bladed: pre-calculate performance and fatigue loads

 Cost model: Define cost function for optimisation

 Steady-state optimiser: calculate set-points

 Dynamic wind farm simulator: simulate performance with realistically changing 
dynamic conditions
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Example results
Row of 6 turbines, 3-hour simulation with changing wind conditions
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Example results: simulation output
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Run 'finobase hifreq' Run 'finoopt hifreq'
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 Set-points change with wind conditions

 Large reduction in fatigue loading

 Slight increase in energy production
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Conclusions

 A basic (usable) toolset has been created, by extending several existing codes, 
and linking them (in ad-hoc fashion, so far…)

 Many components already validated up to a point, but more detailed validation is 
needed (interaction of sub-models, wider range of conditions, etc.). This will 
undoubtedly lead to improved or better-calibrated sub-models

 Improved or alternative sub-models can be easily plugged in as they become 
available

 Integration framework does not yet exist formally, and some components have 
not yet been linked at all (e.g. grid model)

Next steps
 Validation → improvement of sub-models

 Further component integration and software structure design
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