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Controlling wakes in wind farms 

1. What is the optimum* distribution of power and yaw 
setpoints for all the turbines, in this wind condition? 

2. How can we maintain optimum* performance in 
dynamically changing circumstances? 

Traditional sector management 
• Reduced power! 
• increased loading! 

Switch this turbine off? 

Or reduce the power 
set-point of this one? 

“Induction control” 

Or maybe yaw the 
turbine slightly to steer 
its wake away from the 

next turbine? 
“Wake steering” 

* Optimum has to be defined – 
depends on energy and loading 
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Different approaches to control design 

• Quasi-static open-loop control, or “Advanced Sector Management” 
– Optimised set-points pre-calculated for each wind condition (as a function of wind speed, direction, turbulence, …) 

– Wind condition defined e.g. by met mast or SCADA data (filtered Þ slow response) 

– OK as long as wind conditions are slowly-varying 

– Re-optimise when something changes (e.g. energy price, turbine maintenance, etc., etc.) 

• Dynamic closed-loop control (more advanced, many possible approaches) 
– e.g. MPC, with continuous feedback from measurements all over the wind farm 

– Potentially rapid response 

– In principle, should be capable of better performance … … … but is it practical? 

• Machine learning approaches 
– Using domain knowledge (not just ‘black box’) 

All can be tested in LongSim 
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Modelling requirements 

• Detailed representation of turbine wakes in 
different atmospheric conditions 

• Realistic, time-varying wind conditions 
• Accurate modelling of turbine control 

dynamics 

Fidelity 
of flow 
modelling 

• Needs time-domain simulations 
– Long enough to capture low-frequency wind 

variations (hours, days, weeks) 
– Short enough timestep (~1s) to capture 

principal turbine and wind farm control 
dynamics 

– Fast enough to run many repeat simulations 
for design iterations 

Speed, computational resources 

“Engineering” 
e.g. LongSim 

RANS 
CFD 

LES 
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Time-domain simulation - LongSim 

• Choice of engineering wake models, embedded in 
stochastic flow field 

• Wake meandering and advection 

• Turbine details, including supervisory control 

• Wind farm control algorithm 
– Estimation of wind conditions from turbine signals 
– Setpoint lookup 
– Setpoint implementation 

Sedini example with wake steering 

• Wind field generated from historical site data (met 
mast) 

• Test & tune control algorithm details 

• Test controller against different wake models 

• Evaluate power increase, yaw actuator duty etc. 
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Wind farm control – design process 

LongSim 

LUT 

Steady-state setpoint 
optimisation 

Dynamic 
simulations Performance: 

• Energy production 
• Yaw system duty 
• Loads 
• Etc. 

Site 
data: 

Wind 

Compare! 

SCADA 

Robustness: Adjustment for 
uncertainty in wind conditions 

Dynamic wind 
farm control 
algorithm 
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Sedini wind farm, Sardinia 

• 43 GE 1.5MW turbines 1500 
1 

16 2 
17 • Several experiments planned in CL-Windcon 3 

1000 4 
18 project 

19 5 
• Wake steering tests E7 20 500 6 

21 
7 28 • Wake steering and induction control field 

22 8 
E6 23 tests for a row of 9 turbines (this Mast 0 

30 9 presentation) 10 
24 11 

12 25 – Preliminary control design and evaluation for -500 E5 13 

wake steering 26 
31 

E4 32 

– Final design for induction control tests (which are 33 -1000 
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Wake model makes a difference! (wake steering) 
Power gain (steady state) with optimised setpoints 

Wake model: A1 E1 A1 but setpoints calculated with E1 
Power ratio for WS Results1&2&3, wake A1 , TI=0.1 Power ratio for WS Results1&2&3, wake E1 , TI=0.1 PowerRatio WakeModel_A1.dat with WFC1&2&3_WS_E1.dat, TI=0.1 
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2.5 Wake model investigation, using SCADA data 
RMS error summed over turbines for each wake model 2 
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Wake models 

•Standard Ainslie: industry standard for energy calculations 
•Standard EPFL: popular for wake studies; several tunable parameters, 
so can always be made to fit reasonably well 

•Modified Ainslie (selected): 
– Stability correction to eddy viscosity (using Obukhov length derived from historical mast data) 
– Wake superposition: sum-of-deficits instead of large wind farm corrections 

– Removal of some approximations in the standard model 

– General applicability: no tunable parameters 
– Allows possibility for control to track measured stability (e.g. using sonic anemometer), in 

addition to wind speed, direction and turbulence. 
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Need for dynamic simulations 

• How do wakes behave dynamically? 
– Meandering, advection 

• How do wind conditions vary in practice, and how well can we follow this? 
– Robust (smoothed) setpoints to account for uncertainties in wind condition? 

• How do wind conditions vary across the farm at any time? 
– Assume ambient conditions are the same everywhere in the farm at any time? 
– Smoothed setpoints again, or allow variation of estimated wind conditions? 

• How to measure the wind condition? 
– Met mast if available? 
– Average of conditions from SCADA at unwaked turbines? 
– Filtering, to be representative of propagation through the farm 
– Variations across the farm? 

• How often to update the control? 
– Tracking accuracy vs. smoothness of control action 

• How to implement the setpoint changes at the turbine 
– Especially for yaw control. Consider overriding the turbine yaw logic. 
– How to handle ‘flipping’ of yaw offset as wind direction changes? 

11 DNV GL © 02 October 2019 



Induction control for Sedini: Dynamic simulation (5 hour period) 
9 Wind conditions (from met mast) Setpoint example (#37) 
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Wake steering example – large wind farm 

•Yaw setpoints optimised in steady 
state (whole wind farm) 

•Dynamic simulations achieved 25-
50% of steady-state expectation 

•Can be improved: 
– Better handling of yaw logic 
– Consideration of wind direction variations 

across farm 

Annual Energy Production increase 

Steady-state 2.8 – 6.6 % 

Dynamic ~ 0.7 – 3.3 % 
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Wake steering example – Lillgrund wind farm 

• Yaw setpoints optimised in steady state (whole wind farm) 

• Dynamic simulations actually achieving more than steady-state expectation 
– 6.5% dynamic compared to 2.6% quasi-static in this example 
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This project has received funding from the European Union’s Horizon 2020 research and innovation programme under 
grant agreement no. 727680 (TotalControl, website: www.totalcontrolproject.eu). 
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FIELD TEST RESULTS 
DATA FROM 11TH JULY TO 17TH SEPTEMBER 

Sedini_InductionCtrl_test_July11-Sept9.mat, Chunks of 900s after first 300s, increase = 6.2051% 
15 

Sedini_InductionCtrl_test_July11-Sept9.mat, Chunks of 900s after first 300s, increase = 3.9424% 
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• Measurements are continuing 

DNV GL © 02 October 2019 



   

          

   

        

   

 
      

 

 

 
  

 

 
  

 

   

 

 

COMPANION SIMULATIONS 
USING LONGSIM TO TRY TO REPRODUCE MEASURED BEHAVIOUR 

• SCADA measured 1-minute wind data used as wind conditions at the position of turbine #38. 

• Use this to generate a wind field covering all the turbines. 

• LongSim time-domain simulations run using that wind field. 

• Simulated performance of the turbines compared to SCADA measurements. 

Invaluable for understanding what’s happening on site! 

Turbine Power: WTG-34 Turbine Power: WTG-33 Farm power Turbine setpoint: WTG-35 
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LongSim to optimise wind farm yaw control 
• Each turbine makes use of information from its 

neighbours 

• Spatial averaging (reduces the need for time-
averaging) 

• Weighted average favouring the turbines 
nearest to the ‘focal point’ 
– Exponential decay of weighting with distance 

• Position the focal point further upstream, to 
provide some useful preview 

Tested in LongSim: 
• Using the layout of Horns Rev 1 

• Correlated wind field generated from met mast 
data (actually from FINO-1) 

• Wakes, with meandering (small uncertainty: is 
wind direction changed by wake effects?) -3000 -2000 -1000 0 1000 2000 3000 
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Simulation results 
Trade-off – power production vs yaw system duty 

• Yaw duty represented by 
total yaw travel (circles) 
or number of yaw events 
(crosses). 

• Purple: Turbine yaw, 
Red: Central yaw 

• Central yaw slightly 
increases power 
production while 
significantly reducing yaw 
travel 
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Summary – use of LongSim 

• Steady-state set-point optimisation for wake steering & induction control 

• Time-domain simulation for testing any controllers: 
– Active wake control 

– Wind turbine and wind farm yaw control algorithms 

• Sub-second time step, but long simulations (hours ® many days) 

• Realistic varying wind conditions: site-specific 

• Field tests of algorithms designed and tested with LongSim are in progress 

• Companion simulations of field tests are proving invaluable to understand what’s going on! 
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LongSim model – what is it? 

• Range of different engineering wake models available 

• Steady-state setpoint optimisation ® setpoint LUTs for different wind conditions, for each turbine 

• Dynamic time-domain simulation: 
– Long simulations (hours, days or more), fast timestep (~1s) 

– Correlated turbulent wind field across the wind farm, with time-varying mean conditions (e.g. from met 
mast data) 

– Dynamic model of wakes (superimposed on the ambient flow) 
– Meandering, advection, deflection 

– Turbine dynamics: rotor speed, pitch, speed & power control, supervisory control (including yaw control) 

– Dynamic implementation of wind farm control algorithm 
– Estimation of wind conditions 

– Setpoint lookup 

– Implementation of setpoint changes 

– Output of power, loads (indirectly, from database), supervisory control details (e.g. yaw manoeuvres) 
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Some next steps 

• Full-scale measurements 
– Field tests need careful design – need to measure small changes 
– Some tests already reported in literature, beginning to show promise 
– Sedini (in progress, CL-Windcon project) 
– Other field tests in planning 

• Power and loads optimisation 
– Demonstrated previously in simulation 

Validation of 
wake models 

Validation 
of control 

effectiveness 

– Not easy to define waked loads appropriately 
– Not easy to combine energy and loads into an economic cost function 
– Less immediate commercial interest in loads (but it is starting!) 

• Load equalisation 
– During curtailment 
– Over lifetime 

• More advanced control algorithms 
– Closed loop, e.g. MPC 
– AI / machine learning 

Characterisation of 
waked turbine loads 
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Conclusions 
Can wind farms realistically benefit from active control of turbine wakes? 

• Almost certainly, yes 
– Still many uncertainties in modelling 
– More field testing required 
– Wake steering may be more effective, but more problematic to implement 
– Induction control: the jury is still out (evidence in favour is beginning to return). More straightforward to implement. 
– Dynamic induction control: still at the research stage – could be promising but still many questions 

• Modest energy gains 
– Very dependent on the situation (especially wind farm layout and wind rose) 
– Could be several percent – very valuable 
– Even small gains (<0.5%) are valuable if available with confidence 
– Difficult to demonstrate convincingly in the field over a wide range of conditions, but progress is happening 

• Significant loading benefits 
– Hard to quantify waked loads accurately 
– Reduced O&M costs (but hard to quantify economic benefits) 
– Increased plant lifetime (ideally, all turbines reach end of life simultaneously) 

• More research needed! 
– Many approaches, no consensus yet 
– Modelling improvements & validations 
– Characterisation of waked turbine loads 
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	Wake model investigation, using SCADA data 
	RMS error summed over turbines for each wake model 
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	Wake models 
	§Standard 
	§Standard 
	§Standard 
	Ainslie: industry standard for energy calculations 

	§Standard 
	§Standard 
	EPFL: popular for wake studies; several tunable parameters, so can always be made to fit reasonably well 

	üModified 
	üModified 
	üModified 
	Ainslie (selected): 

	– 
	– 
	– 
	Stability correction to eddy viscosity (using Obukhov length derived from historical mast data) 

	– 
	– 
	Wake superposition: sum-of-deficits instead of large wind farm corrections 

	– 
	– 
	Removal of some approximations in the standard model 

	– 
	– 
	General applicability: no tunable parameters 

	– 
	– 
	Allows possibility for control to track measured stability (e.g. using sonic anemometer), in addition to wind speed, direction and turbulence. 
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	Need for dynamic simulations 
	Figure
	§
	§
	§
	§
	§

	How do wakes behave dynamically? 

	– Meandering, advection 

	§
	§
	§
	§

	How do wind conditions vary in practice, and how well can we follow this? 

	– Robust (smoothed) setpoints to account for uncertainties in wind condition? 

	§
	§
	§
	§

	How do wind conditions vary across the farm at any time? 

	– 
	– 
	– 
	Assume ambient conditions are the same everywhere in the farm at any time? 

	– 
	– 
	Smoothed setpoints again, or allow variation of estimated wind conditions? 



	§
	§
	§
	§

	How to measure the wind condition? 

	– 
	– 
	– 
	Met mast if available? 

	– 
	– 
	Average of conditions from SCADA at unwaked turbines? 

	– 
	– 
	Filtering, to be representative of propagation through the farm 

	– 
	– 
	Variations across the farm? 
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	§

	How often to update the control? 

	– Tracking accuracy vs. smoothness of control action 

	§
	§
	§
	§

	How to implement the setpoint changes at the turbine 

	– 
	– 
	– 
	Especially for yaw control. Consider overriding the turbine yaw logic. 

	– 
	– 
	How to handle ‘flipping’ of yaw offset as wind direction changes? 




	Figure
	Figure
	Induction control for Sedini: Dynamic simulation (5 hour period) 
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	Wake steering example – large wind farm 
	§Yaw 
	§Yaw 
	§Yaw 
	setpoints optimised in steady state (whole wind farm) 

	§Dynamic 
	§Dynamic 
	simulations achieved 2550% of steady-state expectation 
	-


	§Can 
	§Can 
	§Can 
	be improved: 

	– 
	– 
	– 
	Better handling of yaw logic 

	– 
	– 
	Consideration of wind direction variations across farm 
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	Steady-state 2.8 – 6.6 % Dynamic ~ 0.7 – 3.3 % 
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	Wake steering example – Lillgrund wind farm 
	Yaw setpoints optimised in steady state (whole wind farm) 
	§

	Dynamic simulations actually achieving more than steady-state expectation 
	§

	– 6.5% dynamic compared to 2.6% quasi-static in this example 
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	FIELD TEST RESULTS 
	DATAFROM11JULYTO17SEPTEMBER 
	TH 
	TH 

	Sedini_InductionCtrl_test_July11-Sept9.mat, Chunks of 900s after first 300s, increase = 6.2051% 15 
	Sedini_InductionCtrl_test_July11-Sept9.mat, Chunks of 900s after first 300s, increase = 3.9424% 
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	COMPANIONSIMULATIONS 
	COMPANIONSIMULATIONS 
	USINGLONGSIMTOTRYTOREPRODUCEMEASUREDBEHAVIOUR 
	§
	§
	§
	§

	SCADAmeasured1-minutewind data used aswind conditionsattheposition ofturbine#38. 

	§
	§
	§

	Use this to generate a wind field covering all the turbines. 

	§
	§
	§

	LongSimtime-domain simulationsrun usingthatwind field. 

	§
	§
	§

	Simulatedperformanceoftheturbinescomparedto SCADAmeasurements. Invaluable forunderstanding what’shappening onsite! 


	Turbine Power: WTG-34 
	Turbine Power: WTG-33 Farm power Turbine setpoint: WTG-35 
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	LongSim to optimise wind farm yaw control 
	§
	§
	§
	§

	Each turbine makes use of information from its neighbours 

	§
	§
	§

	Spatial averaging (reduces the need for time-averaging) 

	§
	§
	§
	§

	Weighted average favouring the turbines nearest to the ‘focal point’ 

	– Exponential decay of weighting with distance 

	§
	§
	§
	§

	Position the focal point further upstream, to provide some useful preview 

	Tested in LongSim: 

	§
	§
	§

	Using the layout of Horns Rev 1 

	§
	§
	§

	Correlated wind field generated from met mast data (actually from FINO-1) 

	§
	§
	§

	Wakes, with meandering (small uncertainty: is wind direction changed by wake effects?) 
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	Simulation results Trade-off – power production vs yaw system duty 
	§
	§
	§
	§

	Yawdutyrepresented by totalyawtravel(circles) ornumberofyawevents (crosses). 

	§
	§
	§
	§

	Purple:Turbineyaw, 

	Red:Centralyaw 

	§
	§
	§

	Centralyawslightly increasespower production while significantlyreducingyaw travel 
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	Central Yaw: Yaw travel, deg 
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	Turbine Yaw: Yaw travel, deg 
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	Central Yaw: Yaw events 
	Turbine Yaw: Yaw events 
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	Summary – use of LongSim 
	§
	§
	§
	§

	Steady-state set-point optimisation for wake steering & induction control 

	§
	§
	§
	§

	Time-domain simulation for testing any controllers: 

	– 
	– 
	– 
	Active wake control 

	– 
	– 
	Wind turbine and wind farm yaw control algorithms 



	§
	§
	§

	Sub-second time step, but long simulations (hours ® many days) 

	§
	§
	§

	Realistic varying wind conditions: site-specific 

	§
	§
	§

	Field tests of algorithms designed and tested with LongSim are in progress 

	§
	§
	§

	Companion simulations of field tests are proving invaluable to understand what’s going on! 
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	LongSim model – what is it? 
	§
	§
	§
	§

	Range of different engineering wake models available 

	§
	§
	§

	Steady-state setpoint optimisation ® setpoint LUTs for different wind conditions, for each turbine 

	§
	§
	§
	§

	Dynamic time-domain simulation: 

	– 
	– 
	– 
	Long simulations (hours, days or more), fast timestep (~1s) 

	– 
	– 
	Correlated turbulent wind field across the wind farm, with time-varying mean conditions (e.g. from met mast data) 

	– 
	– 
	– 
	Dynamic model of wakes (superimposed on the ambient flow) 

	– Meandering, advection, deflection 

	– 
	– 
	Turbine dynamics: rotor speed, pitch, speed & power control, supervisory control (including yaw control) 

	– 
	– 
	– 
	Dynamic implementation of wind farm control algorithm 

	– 
	– 
	– 
	Estimation of wind conditions 

	– 
	– 
	Setpoint lookup 

	– 
	– 
	Implementation of setpoint changes 



	– 
	– 
	Output of power, loads (indirectly, from database), supervisory control details (e.g. yaw manoeuvres) 
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	Some next steps 
	§
	§
	§
	§
	§

	Full-scale measurements 

	– 
	– 
	– 
	Field tests need careful design – need to measure small changes 

	– 
	– 
	Some tests already reported in literature, beginning to show promise 

	– 
	– 
	Sedini (in progress, CL-Windcon project) 

	– 
	– 
	Other field tests in planning 



	§
	§
	§
	§

	Power and loads optimisation 

	– 
	– 
	– 
	Demonstrated previously in simulation 

	– 
	– 
	Not easy to define waked loads appropriately 

	– 
	– 
	Not easy to combine energy and loads into an economic cost function 

	– 
	– 
	Less immediate commercial interest in loads (but it is starting!) 



	§
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	§

	Load equalisation 

	– 
	– 
	– 
	During curtailment 

	– 
	– 
	Over lifetime 



	§
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	§

	More advanced control algorithms 

	– 
	– 
	– 
	Closed loop, e.g. MPC 

	– 
	– 
	AI / machine learning 




	Validation of wake models Validation of control effectiveness 
	Characterisation of waked turbine loads 
	Figure
	Conclusions 
	Can wind farms realistically benefit from active control of turbine wakes? 
	§
	§
	§
	§
	§

	Almost certainly, yes 

	– 
	– 
	– 
	Still many uncertainties in modelling 

	– 
	– 
	More field testing required 

	– 
	– 
	Wake steering may be more effective, but more problematic to implement 

	– 
	– 
	Induction control: the jury is still out (evidence in favour is beginning to return). More straightforward to implement. 

	– 
	– 
	Dynamic induction control: still at the research stage – could be promising but still many questions 



	§
	§
	§
	§

	Modest energy gains 

	– 
	– 
	– 
	Very dependent on the situation (especially wind farm layout and wind rose) 

	– 
	– 
	Could be several percent – very valuable 

	– 
	– 
	Even small gains (<0.5%) are valuable if available with confidence 

	– 
	– 
	Difficult to demonstrate convincingly in the field over a wide range of conditions, but progress is happening 
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	§

	Significant loading benefits 

	– 
	– 
	– 
	Hard to quantify waked loads accurately 

	– 
	– 
	Reduced O&M costs (but hard to quantify economic benefits) 

	– 
	– 
	Increased plant lifetime (ideally, all turbines reach end of life simultaneously) 



	§
	§
	§
	§

	More research needed! 

	– 
	– 
	– 
	Many approaches, no consensus yet 

	– 
	– 
	Modelling improvements & validations 

	– 
	– 
	Characterisation of waked turbine loads 
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