Supplemental Information: Modeling Greenhouse Gas Emissions from Closed-Loop Pumped Storage Hydropower

Annika Eberle, Aaron Vimont, Stuart Cohen, Leta Keane, Dylan Hettinger, Rebecca Hanes, Timothy Simon, Greg Avery, Garvin Heath, and Daniel Inman

This is supplemental information related to the <u>Pumped Storage Hydropower Life Cycle</u> <u>Assessment website</u>.

As detailed on the <u>associated website</u>, the National Renewable Energy Laboratory (NREL) developed the pumped storage hydropower life cycle assessment (PSH-LCA) tool—based on the methods outlined in <u>Simon et al. (2023)</u>—to allow users to choose PSH site characteristics at varying levels of detail and understand how different components, materials, and life cycle phases contribute to the overall life cycle greenhouse gas (GHG) emissions of a closed-loop PSH facility. Figure 1 illustrates the major components of a closed-loop PSH facility that can be modeled using this tool.

Figure 1. Components in a PSH facility that can be modeled using the PSH-LCA tool. Modified from Cohen, Ramasamy, and Inman (2023).

The PSH-LCA tool calculates GHG emissions for thirteen system components:

- Dam—The embankment structure used to hold back water and form a reservoir
- Headrace—The water conveyance tunnel from the upper reservoir to the penstock
- Penstock—The water conveyance tunnel from the headrace to the pump-turbine
- Anchor—The structural component used to secure the penstock
- Tailrace—The water conveyance tunnel from the outlet of the pump-turbine to the lower reservoir
- Powerhouse—The structure that houses the motor-generator and pump-turbine units
- Reservoir—The body of water used for energy storage, either at the upper (higher elevation) or lower (lower elevation) part of the PSH plant
- Surge chamber—A structure that helps maintain the flow conditions in the pumpturbine
- Stored electricity—The electricity that is used to operate the pumps and move water to the upper reservoir, which is then stored as the potential energy of water in the upper reservoir, minus losses
- Transformer—The device that converts electrical energy from a given input voltage to a different output voltage
- Transmission line—The electrical transmission line from the PSH plant to the closest high-voltage transmission interconnection
- Pump-turbine—The mechanical components that convert between pressure and mechanical energy to either move water from the lower to upper reservoirs by pumping or release water from the upper to lower reservoirs to drive the turbine-generator
- Motor-generator—The device that either converts rotational energy from the turbine into electrical energy or uses electrical energy to drive the pump.

There can be one or more of each of these components in a PSH facility (e.g., two dams are shown in Figure 1—one for the upper reservoir and one for the lower reservoir).

The tool combines the physical properties of those components with empirical curve fits to estimate twenty-two key material and product flows that are required to construct and operate a facility (Table 1). Table 2 defines the variables used in the equations shown in Table 3 for calculating the material and product flows. Table 4 includes additional assumptions used to complete the LCA calculations. These equations, along with the methods described in Simon et al. (2023), are embedded in the PCA-LCA tool to calculate GHG emissions for a wide range of potential PSH designs.

Table 1. List of Material and Product Flows Included in the LCA

Material/Product Flow	Primary source(s) or use(s)
Asphalt	Reservoir liner (if asphalt type is chosen)
Concrete	Dam construction (if concrete, roller-
	compacted concrete, or concrete face types
	are chosen)
	• Tunnel construction (i.e., for the headrace and
	tailrace)
Copper	Transmission line
	 Pump-turbine components
	 Transformer components
Diesel	Operation of on-site machinery for construction
Electricity, two types:	Pump operation to move water to the upper reservoir
Used for construction	
Used during operation	
(called "stored	
electricity")	
Explosives	Creation of new reservoirs
Direct GHG emissions	Emissions from the reservoir due to land use change
Lubricating oil	Maintenance of mechanical parts in the powerhouse
Polymer	Insulation in the transformer
Riprap	Slope protection for earthen dams
Sand and gravel	Slope reinforcement for rockfill dams
Steel, three types:	Reinforcement for structural components
Chromium	
Low alloy	
Reinforcing	
Soil	Slope reinforcement for earthen dams
Sulfur hexafluoride	Used in electrical insulation and switches
Transmission line	Electrical infrastructure to connect the PSH facility to
	the power system
Transportation, three types:	Transportation of materials to the PSH construction
 Freight ship 	site (prior to or as a part of construction)
• Rail	
Truck	
Water	Initial reservoir fill
	Annual replenishment to account for
	operational and evaporation losses

Table 2. Variable Definitions

Variable	Definition	Unit	Type of Variable
R _{turbine}	Average rated capacity of the turbine(s)	MW	User input
<i>R_{facility}</i>	Rated capacity of the facility	MW	User input
G _{facility}	Annual generation	GWh/year	User input
E _{roundtrip}	Ratio of energy discharged to the grid from a starting	Unitless	User input
	state of charge to the energy received from the grid to		(options include:
	bring the system to the same starting state of charge		0.7, 0.75, 0.8,
	(value is less than one due to losses in the pump-		0.85)
	turbine, electromechanical, and other systems)		
G_{mix}	Stored electricity grid mix (i.e., the composition of	Unitless	User input ^a
	technologies used to provide charging energy for the		
	PSH plant and how it changes over time; grid mixes are		
	based on simulations conducted using NREL's Regional		
	Energy Deployment System [<u>ReEDS]</u> model)		
L	Assumed physical life of the plant (from online date to	Year	User input
	decommissioning)		(options include:
			80, 100)
N _{turbine}	Number of turbines	Unitless	User input
V _{reservoir}	Volume of the reservoir	m³	User input
A _{reservoir}	Surface area of the reservoir	m ²	User input
D _{reservoir}	Average depth of the reservoir = $\frac{V_{reservoir}}{A_{reservoir}} * [0.0348 \text{ m/ft}]$	m	Calculated value
lpowerhouse	Length of the powerhouse (for rectangular powerhouse)	m	User input
Wpowerhouse	Width of the powerhouse (for rectangular powerhouse)	m	User input
$h_{powerhouse}$	Height of the powerhouse	m	User input
<i>d</i> _{powerhouse}	Diameter of the powerhouse (for cylindrical	m	User input
	powerhouse)		
l _{dam}	Length of the dam along its crest	m	User input

Variable	Definition	Unit	Type of Variable
h _{dam}	Average height of the dam along its crest	m	User input
V _{dam}	Volume of the dam	m ³	User input
а	Multiplier to modify the dam concrete requirements,	Unitless	Constant
	specific to the type of dam (equal to 0.99 if the dam type		
	has a concrete face, 0.95 if roller-compacted concrete,		
	and 0 for other types of dams)		
b	Multiplier that varies with the type of dam (equal to 1 for	Unitless	Constant
	dams that are rockfill or rockfill with a concrete face and		
	0 for all other types of dams)		
С	Multiplier that varies with the type of dam (equal to 1 for	Unitless	Constant
	dams that are earthen or earthen with a concrete face		
	and 0 for all other types of dams)		
l _{headrace}	Length of the headrace tunnel	m	User input
d _{headrace}	Diameter of the headrace tunnel	m	User input
l _{tailrace}	Length of the tailrace tunnel	m	User input
d _{tailrace}	Diameter of the tailrace tunnel	m	User input
lpenstock	Length of the penstock tunnel	m	User input
$d_{penstock}$	Diameter of the penstock tunnel	m	User input
ρ_{liner}	Density of the liner material, which varies with the type	kg/m ³	Constant
	of material (2322 for asphalt, 1700 for clay, and 0.5 for		
	geomembrane)		
k	Multiplier to scale the liner material requirements by the	Unitless	Constant
	material type (equal to 1 for geomembrane, 0.375 for		
	concrete and asphalt, and 0.25 for clay)		
l _{line}	Length of the transmission line	m	User input
d _{transport}	Average transportation distance (varies by mode of	km	Based on
k -	transport)		methods outlined
			in Simon et al.
			(2023) (Table 4)

Variable	Definition	Unit	Type of Variable	
<i>M</i> _{transport}	Multiplier for transportation (varies by mode of	Unitless	Constant (Table 4)	
Ľ	transport)			
T _{steel}	Total mass of steel used in the transformer	kg	Calculated value	
			(Table 3)	
T _{copper}	Total mass of copper used in the transformer	kg	Calculated value	
			(Table 3)	
<i>Q_{material}</i>	Quantity of all materials except concrete	kg	Calculated value	
			(Table 3)	
Q _{concrete}	Quantity of concrete	m ³	Calculated value	
			(Table 3)	
^a Definitions for st	ored electricity grid mix: the mid case is from the NREL 20	021 Standard Scena	arios <u>Report;</u> 95%	
reduced grid CO ₂	emissions by 2035 is based on the "95% by 2035" scenar	io in the NREL 2021	Standard Scenarios	
<i>Report</i> ; and 95% reduced grid CO ₂ emissions by 2050 is based on the "95% by 2050" scenario in the NREL 2021				
Standard Scenarios Report.				
MW = megawatt: (GWh = gigawatt-hour: m = meter: ft = foot: kg = kilogram: k	km = kilometer.		

Table 3. Equations Used To Estimate Material and Product Flows for a Closed-Loop PSH System

Component	Material/Product Flow	Equation/Assumption	Unit	Source
Anchor	Concrete	Assumed to equal 40	m ³	NWRED (2012)
Entire PSH	Copper	$((1.5632 R_{turbine} - 64.605))$	kg	Curve fit derived
system		+ $(3.1895 R_{turbine})$		from data in
		101 22))N 0.3672		Flury and
		$-101.32)N_{turbine}$ 0.00110221 ton		Frischknecht
		0.00110251 kg		(2012), Torres
				(2011), Krüger et
				al. (2018), and
				Kapila et al.
				(2019)

Component	Material/Product Flow	Equation/Assumption	Unit	Source
	Diesel	0.916 V _{reservoir} + 30,000,000	L	Curve fit derived from data in Flury and Frischknecht (2012), Krüger et al. (2018), and Kapila et al. (2019)
	Electricity, construction	72,900 $R_{turbine} * N_{turbine}$	kWh	Industry consultation
	Electricity, stored (operational)	$\frac{G_{facility}}{E_{roundtrip}} * \frac{1,000,000 \text{ kWh}}{\text{GWh}}$	kWh/year	Unit conversion of user input
	Transportation for all materials except concrete (varies by mode—freight ship, rail, or truck—and by material)	$\frac{d_{transport} * M_{transport} * Q_{material}}{907.185 \frac{\text{kg}}{\text{ton}}}$	t-km	Based on Simon et al. (2023) (see Table 4 for details)
	Transportation for concrete (varies by mode—freight ship, rail, or truck)	$d_{transport} * M_{transport} * Q_{concrete} \\ * 2.4 \frac{\text{tons of concrete}}{\text{m}^3}$	t-km	Based on Simon et al. (2023) (see Table 4 for details)
	Water, initial fill	V _{reservoir}	m³	Geometric relationship
	Water, refill due to operational losses	$A_{reservoir} * \frac{33.2 \text{ cm}}{\text{year}} * \frac{0.01 \text{ m}}{\text{cm}}$	m³/year	Based on an average evaporation rate calculated from Sanford and Selnick (2013)

Component	Material/Product Flow	Equation/Assumption	Unit	Source
Dam	Concrete	$(2 + 0.003 h_{dam})(1.64 h_{dam}) l_{dam}$	m ³	Geometric
		a <u> </u>		relationship
	Riprap	2 + 20 + l + 2500 kg of riprap	kg	Geometric
		$2 * 20 * l_{dam} * 2500 - m^3$		relationship
	Sand and gravel	$V_{dam,center} + 2 * V_{dam,side}$ tons of soil	kg	Geometric
		$\frac{b}{0.00110231 \frac{\text{ton}}{\text{kg}}} 90.4 \frac{\text{m}^3 \text{ of soil}}{\text{m}^3 \text{ of soil}}$		relationship
	Soil	$\left(V_{dam,center} + 2 * V_{dam,side}\right)$ tons of soil	kg	Geometric
		$\frac{c}{0.00110231 \frac{\text{ton}}{\text{kg}}} 59.3 \frac{\text{m}^3 \text{ of soil}}{\text{m}^3 \text{ of soil}}$		relationship
	Steel, reinforcing	$(1 - 1)$ $[(2 + 0.003 h_{dam})(1.64 h_{dam}) l_{dam}]$	kg	Geometric
		(1-a) 2		relationship
		tons of reinforcing steel		
		* 7.85 <u>m³</u>		
		* <u>1 kg</u>		
		<u>0.00110231 ton</u>		
Generator	Copper	$\frac{0.34975 N_{turbine}(3.1895 * R_{turbine} - 101.32)}{100}$	kg	Curve fit derived
		$0.00110231 \frac{\text{ton}}{\text{kg}}$		from data in
		ng		Flury and
				(2012), Iorres
				(2011), Kruger et
				al. (2018), anu Kopilo et el
				(2010)
	Steel low alloy	$21502N_{\odot}$ (3 1895 * R_{\odot}) – 101 32)	ka	Curve fit derived
		ton	^{אין}	from data in
		$0.00110231 \frac{con}{kg}$		Flury and
				Frischknecht
				(2012). Torres
				(2011), Krüger et

Component	Material/Product Flow	Equation/Assumption	Unit	Source
				al. (2018), and
				(2019)
Headrace	Concrete	$\pi \left[\left(\frac{d_{headrace}}{2} \right)^2 \right]$	m³	Geometric
		$\left[\left(\begin{array}{c} 2 \end{array}\right) \right] $		retationship
		$-\left(\frac{\alpha_{headrace}}{2}\right)$		
		$\left[-0.667\right)^2 l_{headrace}$		
	Steel, reinforcing	$0.01 * \pi \left[\left(\frac{d_{headrace}}{2} \right)^2 \right]$	kg	Geometric relationship
		$-\left(\frac{d_{headrace}}{2}\right)$		
		$\left0.667 ight)^{2} ight]l_{headrace}$		
		* $7.85 \frac{\text{tons of reinforcing steel}}{\text{m}^3}$		
		$*\frac{1}{0.00110231}\frac{\text{kg}}{\text{ton}}$		
Penstock	Steel, low alloy	$\pi \left[\left(\frac{d_{penstock}}{2} \right)^2 \right]$	kg	Geometric relationship
		$-\left(\frac{d_{penstock}}{2}\right)$		
		$(-0.1148)^2 \left[l_{penstock} * \right]$		
		* 7.85 $\frac{\text{tons of reinforcing steel}}{\text{m}^3}$		
		$*\frac{1}{0.00110231}\frac{\text{kg}}{\text{ton}}$		

Component	Material/Product Flow	Equation/Assumption	Unit	Source
Powerhouse	Concrete	For rectangular powerhouse:	m ³	Geometric
		$1.089 \left[h_{powerhouse} * w_{powerhouse} * \right]$		relationship
		$l_{powerhouse} - \{(h_{powerhouse} - 1) *$		
		$(w_{powerhouse} - 1) * (l_{powerhouse} - 1)\}]$		
		For cylindrical powerhouse:		
		1.089 $\pi \left\{ h_{powerhouse} \left(\frac{d_{powerhouse}}{2} \right)^2 - \right.$		
		$\left[\left(h_{powerhouse} - 1 \right) \left(\frac{d_{powerhouse}}{2} - 1 \right)^2 \right] $		
	Steel, reinforcing	For rectangular powerhouse:	kg	Geometric
		$0.011 \left[h_{powerhouse} * w_{powerhouse} * \right]$		relationship
		$l_{powerhouse} - \{(h_{powerhouse} - 1) *$		
		$(w_{powerhouse} - 1) * (l_{powerhouse} - 1) \}] *$		
		$7.85 \frac{\text{tons of reinforcing steel}}{\text{m}^3} * \frac{1}{0.00110231} \frac{\text{kg}}{\text{ton}}$		
		For cylindrical powerhouse:		
		$0.011 \pi \left\{ h_{powerhouse} \left(\frac{d_{powerhouse}}{2} \right)^2 - \right\}$		
		$\left[\left(h_{powerhouse}-1\right)\left(\frac{d_{powerhouse}}{2}-1\right)^{2}\right]$ * 0 *		
		$7.85 \frac{\text{tons of reinforcing steel}}{\text{m}^3} * \frac{1}{0.00110231} \frac{\text{kg}}{\text{ton}}$		
Reservoir	Explosives	$2.5\left(R_{turnhing} * 1000 \frac{\text{kW}}{\text{W}}\right) * N_{turnhing}$	kg	Derived from
		MW) Murbine MW)		data in Flury and
				Frischknecht
				(2012), Guo et al. (2020) Krüger et
				al (2018) Torres
				(2011), and

Component	Material/Product Flow	Equation/Assumption	Unit	Source
				Kapila et al. (2019)
	Liner (material type could be geomembrane, concrete, soil, or asphalt)	$2\pi \left\{ \frac{1}{3} \left[\left[\left(\frac{A_{reservoir}}{\pi} \right)^2 \right]^{1.6075} + 2 \left[\left(\frac{A_{reservoir}}{\pi} \right) d_{reservoir} \right]^{1.6075} \right] \right\}^{\frac{1}{1.6075}} \\ * 0.0381 * \rho_{liner} * k$	kg	Geometric calculation (using ellipsoidal calculation parameter of 1.6075)
	GHG emissions from reservoir	$\frac{512.926 \text{ kg GHG emissions}}{\text{acre of reservoir surface area}} \left(A_{reservoir} \\ * \frac{1}{4046.86 \frac{\text{m}^2}{\text{acre}}} \right)$	kg/year	Prairie et al. (2018)
Surge chamber	Concrete	$(80.524 R_{facility} + 429.25) * 0.99$	m ³	Empirical curve fit using data from Sandvag (2016)
	Steel, low alloy	$\begin{cases} \left[\left(80.524 R_{facility} + 429.25 \right)^{1/3} + 0.0254 \right]^3 \\ - \left(80.524 R_{facility} + 429.25 \right) \\ * 0.02832 \frac{\text{m}^3}{\text{ft}^3} \\ * 7.85 \frac{\text{tons of reinforcing steel}}{1000110231 \text{ ton}} \end{cases}$	kg	Empirical curve fit using data from Sandvag (2016)

Component	Material/Product Flow	Equation/Assumption	Unit	Source
Tailrace	Concrete	$\pi \left[\left(\frac{d_{tailrace}}{2} \right)^2 - \left(\frac{d_{tailrace}}{2} - 0.667 \right)^2 \right] l_{tailrace}$	m³	Geometric relationship
	Steel, reinforcing	$0.01 * \pi \left[\left(\frac{d_{tailrace}}{2} \right)^2 - \left(\frac{d_{tailrace}}{2} - 0.667 \right)^2 \right] l_{tailrace}$	kg	Geometric relationship
Transmission	Sulfur hexafluoride	* 7.85 $\frac{1}{1}$	kg	Vattenfall (2008)
network		$0.34 \frac{1}{E_{roundtrip}} * \frac{1000 \text{ g}}{1000 \text{ g}}$	_	
	Transmission line	$l_{line} * \frac{1 \text{ km}}{1000 \text{ m}}$	km	Unit conversion of user input
Transformer	Copper	$T_{copper} = \frac{199.7 N_{turbine} (0.0017 R_{turbine} + 0.1645)}{0.00110231 \frac{\text{ton}}{\text{kg}}}$	kg	Curve fit derived from data in Flury and Frischknecht (2012), Torres (2011), Krüger et al. (2018), and Kapila et al. (2019)

Component	Material/Product Flow	Equation/Assumption	Unit	Source
	Polymer	$(T_{copper} + T_{steel})$	kg	Proxy value
				derived from
				total material
				quantities for
				other materials
	Steel, low alloy	$_{T}$ 765 (0.0017 $R_{turbine}$ + 0.1645)	kg	Curve fit derived
		$I_{steel} = \frac{0.00110231 \text{ ton}}{100000000000000000000000000000000000$		from data in
		0.00110251 kg		Flury and
				Frischknecht
				(2012), Torres
				(2011), Krüger et
				al. (2018), and
				Kapila et al.
				(2019)
Turbine	Copper	$0.34975 N_{turbine} (1.5632 R_{turbine} - 64.605)$	kg	Curve fit derived
		$0.00110231 \frac{\text{ton}}{\text{cm}}$		from data in
		0.00110251 kg		Flury and
				Frischknecht
				(2012), Torres
				(2011), Krüger et
				al. (2018), and
				Kapila et al.
				(2019)
	Lubricating oil	$36.76 \frac{G_{facility}}{1 \text{ kg}}$	kg/year	Vattenfall (2008)
		$E_{roundtrip}$ 1000 g		
	Steel, chromium	$2.15 N_{turbine} (1.5632 R_{turbine} - 64.605)$	kg	Curve fit derived
		$0.00110231 \frac{ton}{m}$		from data in
		kg		Flury and
				Frischknecht
				(2012), Torres

Component	Material/Product Flow	Equation/Assumption	Unit	Source	
				(2011), Krüger et	
				al. (2018), and	
				Kapila et al.	
				(2019)	
	Steel, low alloy	$2.5 N_{turbine} (0.5474 R_{turbine} + 8.4211)$	kg	Curve fit derived	
		0.00110231 ton		from data in	
		0.00110231 kg		Flury and	
				Frischknecht	
				(2012), Torres	
				(2011), Krüger et	
				al. (2018), and	
				Kapila et al.	
				(2019)	
m = meter; kg = kilogram; L = liter; kWh = kilowatt-hour; GWh = gigawatt-hour; t-km = tonne-kilometer; cm = centimeter; kW					
<u>= kilowatt; MW = megawatt; ft = foot; g = gram; km = kilometer.</u>					

Table 4. Transportation Assumptions (Based on the Methods Described in Simon et al. [2023])

Mode of Transport	Type of Material	Modeling Assumptions ^a			
Truck	Sand and gravel	• $d_{transport}$ = 63.8 km			
	Steel, chromium	• $M_{transport} = 2$			
	Concrete				
	Copper				
	Steel, low alloy				
	Steel, reinforcing				
	Riprap				
	Soil				
Rail	Steel, chromium	• $d_{transport} = 659.9 \mathrm{km}$			
	Concrete	• $M_{transport} = 2$			
	Copper				
	Steel, low alloy				
	Steel, reinforcing				
Freight ship	Steel, chromium	• $d_{transport}$ = 10203.7 km			
	Copper	• $M_{transport} = 1$			
	Steel, low alloy				
No transport	GHG emissions from reservoir	No transportation			
	Water	modeled for these			
	Diesel	materials			
	Electricity				
	Explosives				
	Geomembrane				
	Lubricating oil				
	Sulfur hexafluoride]			
^a Transportation modeling assumptions are based on the methods					
described in the Supporting Information for Simon et al. (2023), which					
identifies specific site locations for all current and proposed PSH facilities					
In the United States and then estimates transportation distances for all					
sites using the locations of existing material and manufacturing facilities for					
available routing maps tools [e.g., SeaBates for freight ship, Google Maps					
for truck, and Aberdeen Carolina & Western Railway's Class I Freight Carrier					
Map for North America for rail]). Transportation distances in the PSH-LCA					
tool use an average of all site distances computed for all types of materials					
for each mode of transport using the methods developed by Simon et al.					
(2023).					

Suggested citation for website:

Vimont, Aaron, Annika Eberle, Leta Keane, Stuart Cohen, and Rebecca Hanes. 2024. "Life Cycle Assessment of New Closed-Loop Pumped Storage Hydropower Facilities." Pumped Storage Hydropower Life Cycle Assessment. Accessed [DATE]. <u>https://dev-apps.openei.org/psh-lca/</u>.

References

Cohen, Stuart, Vignesh Ramasamy, and Danny Inman. 2023. *A Component-Level Bottom-Up Cost Model for Pumped Storage Hydropower*. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-84875. https://www.nrel.gov/docs/fy23osti/84875.pdf.

Cole, Wesley, J. Vincent Carag, Maxwell Brown, Patrick Brown, Stuart Cohen, Kelly Eurek, Will Frazier, et al. 2021. 2021 Standard Scenarios Report: A U.S. Electricity Sector Outlook. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A40-80641. https://www.nrel.gov/docs/fy22osti/80641.pdf.

Flury, Karin, and Rolf Frischknecht. 2012. *Life Cycle Inventories of Hydroelectric Power Generation*. Schaffhausen, Switzerland: ESU-services Ltd. https://www.dflca.ch/inventories/Hintergrund/Flury_2012-hydroelectric-power-generation.pdf.

Guo, Zhi, Shuaishuai Ge, Xilong Yao, Hui Li, and Xiaoyu Li. 2020. "Life Cycle Sustainability Assessment of Pumped Hydro Energy Storage." *International Journal of Energy Research* 44: 192–204. <u>https://doi.org/10.1002/er.4890</u>.

Kapila, S., A.O. Oni, E.D. Gemechu, and A. Kumar. 2019. "Development of Net Energy Ratios and Life Cycle Greenhouse Gas Emissions of Large-Scale Mechanical Energy Storage Systems." *Energy* 170: 592–603. https://doi.org/10.1016/j.energy.2018.12.183.

Krüger, Klaus, Pierre Mann, Niklas van Bracht, and Albert Moser. 2018. "Li-Ion Battery Versus Pumped Storage for Bulk Energy Storage - A Comparison of Raw Material, Investment Costs and CO₂-Footprints." Presented at HydroVision International 2018 in Charlotte, NC, on June 27, 2018. York, PA: Voith Hydro Inc. <u>https://www.ili-energy.com/case-for-psh/Voith_2018_06_27_HydroVision_Li-lon_Vs_Pumped_Storage.pdf</u>.

Prairie, Yves T., Jukka Alm, Jake Beaulieu, Nathan Barros, Tom Battin, Jonathan Cole, Paul del Giorgio, et al. 2018. "Greenhouse Gas Emissions From Freshwater Reservoirs: What Does the Atmosphere See?" *Ecosystems* 21: 1058–1071. https://doi.org/10.1007/s10021-017-0198-9.

Sandvag, Simon Utseth. 2016. "Surge Tank Atlas for Hydropower Plants." Master's thesis, Norwegian University of Science and Technology.

Sanford, Ward E., and David L. Selnick. 2013. "Estimation of Evapotranspiration Across the Conterminous United States Using a Regression With Climate and Land-Cover Data." *Journal of the American Water Resources Association* 49 (1): 217–230. https://doi.org/10.1111/jawr.12010.

Simon, Timothy, Daniel Inman, Rebecca Hanes, Gregory Avery, Dylan Hettinger, and Garvin Heath. 2023. "Life Cycle Assessment of Closed-Loop Pumped Storage Hydropower in the United States." *Environmental Science & Technology* 57 (33): 12251–12258. <u>https://doi.org/10.1021/acs.est.2c09189</u>.

SWECO Norge AS. 2012. Cost Base for Hydropower Plants (With a Generating Capacity of More Than 10 000 kW). Oslo, Norway: Norwegian Water Resources and Energy Directorate. <u>https://www.osti.gov/etdeweb/servlets/purl/21573423</u>.

Torres, Octavio. 2011. "Life Cycle Assessment of a Pumped Storage Power Plant." Master's thesis, Norwegian University of Science and Technology.

Vattenfall. 2008. "Certified Environmental Product Declaration of Electricity from Vattenfalls's Nordic Hydropower." <u>www.vattenfall.com</u>.