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Project Background and Objectives

> Department of Energy’s Transmission Research Program
FOA 1861 — Big Data Analysis of Synchrophasor Data (Oct. 2019 — Mar. 2022)
> Project Objectives

Derive value from the vast amounts of Phasor Measurement Unit (PMU) Data

Provide actionable information on the use of Machine Learning and Atrtificial Intelligence
methods on large PMU datasets

Enable faster grid analytics and modeling

> First-of-its-kind PMU dataset
Covers each of three U.S. interconnections (~450 PMU, 30 & 60 Hz reporting rate)
Covers 2 years including event logs (27 TB)
Is real data with inconsistencies, varying quality levels, and flaws (66% - 70% good data)
Is anonymized to protect the data providers (lack of location and topology information)
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Technical Accomplishments
»  PMU Data Quality Improvement

Online PMU Missing Value Replacement via Event-Participation Decomposition
»  Power System Event Detection

Graph Signal Processing-based Event Detection

Voltage Event Detection Using Optimization with Structured Sparsity-Inducing Norms

Power System Event Detection with Bidirectional Anomaly Generative Adversarial Networks

»  Power System Event Classification

Deep Neural Network-based Power System Event Classification

Classify System Events with a Small Number of Training Labels with Transfer Learning

Adversarial Attacks on Deep Neural Network-based Power System Event Classification Models
»  Power System Dynamic Parameter Estimation
Dynamic Parameter Estimation with Physics-based Neural Ordinary Differential Equations

»  Synthetic Power System Event Data Creation
pmuBAGE: The Benchmarking Assortment of Generated PMU Events

»  Power System Event Signature Library

A Dynamic Behavior-based Power System Event Signature Library



Voltage Event Detection Using Optimization with
Structured Sparsity-Inducing Norms
» Background: Is PMU Data Matrix Low Rank?

Low-rank property of PMU data matrix holds up during normal operations

> Largest singular value of Q data matrix accounts for 99.988% of the variance
The low-rank property of PMU data matrix is no longer valid during voltage events
> The largest singular value of Q data matrix accounts for only 59.743% of the variance

TABLE 1
SINGULAR VALUE DECOMPOSITION OF P, Q, V, AND F DATA MATRICES OVER | SECOND (30 SAMPLES)

PR e Verr =7 e - , " o
Data Type Electrical Quantity Singular Value Percentage Variance [T?r Singular Value Proportion {EE -:7:]
1st 2nd Ird 1st 2nd Jrd
P (Active Power) 09.999261% 0.000536% 0.000109% 00.242040% 0.229736% 0.103600%
Non-event Data () (Reactive Power) 00.988472% 0.008789% 0.001427% 07.134683% 0.910695% 0.366895%
V (Voltage Magnitude)  99.999905% 0.000005 % 0.000000% 00.963393% 0.022302% 0.003274%
F (Frequency) 09.999990% 0.000000% 0.000000% 00.996304% 0.000824% 0.000654%
P (Active Power) % 4 933310% 0.045058% 78.391273%  17.8635347%  1.707207%
Event Dat () (Reactive Power) 40.185730% 0.068034% 53.278058%  43.603845%  1.797904%
ent Latd V (Voltage Magnitude)  99.545736%  0.447828% 0.006371% 02.802350%  6.230519%  0.743139%
F (Frequency) 00.990904 % 0.000006% 0.000000% 00.971380% 0.023498% 0.001260%
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Key Observations

Voltage related events trigged by
system faults are often regional events

The X — L during voltage event periods
have row-sparse structure

Rows of residual matrix correspond to
PMUs highly impacted by the event

Main Idea

Decompose the streaming PMU data
matrix X into

> Alow-rank matrix L, a row-sparse event-
pattern matrix S, and a noise matrix G

Extract anomaly features from L & S

Use clustering algorithm to identify
power system voltage events

Time {1/30 s)

Row-Sparse Structure of Residual PMU Data Matrix*
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Fig. 2. The heatmap of “X —L" (left) and “X — L — G (nght) for normalized
active power data (scaled from 0 to 1). The event happens approximately at
the red line.

* X. Kong, B, Foggo, and N. Yu, “Online Voltage Event Detection Using Optimization with Structured Sparsity-Inducing 6
Norms,“ IEEE Transactions on Power Systems, 2022. DOI: 10.1109/TPWRS.2021.3134945.
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Overview of Voltage Event Detection Framework
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i Event Detection . .y . :
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B e w from that of the system voltage events
v Adopt density-based cluster analysis DBSCAN
v Outliers correspond to voltage events
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Decompose Matrix with Row-Sparse Structure with
Proximal Bilateral Random Projection (PBRP)

1
in —||X -L- S|}
min 5| I

1
min E||X — L —S||z + A5

L,S

rank(L) = r, = '
_ s.t. rank(L) = r,
S is row-sparse. '

» Solution Approach: Coordinate Descent

rank(L)=r

L® =arg min  L|X —L-SkD|2
§® = arg min 3||X — L™ — S| + A[|S |1

»  Update L: Closed-form Bilateral  Algorithm 2 Proximal BRP (PBRP)
Random Projection (BRP) Input: X € BR™*"1 rank r, power factor Q, A, €

Output: L, S

enhanced by Power Scheme e e

- while XL > ¢ do
L =BRP(X - §)

1
2
3
4: S = P'F’G-TAH-HM {X — L}:
5
6

»  Update S with proximal method

Prﬂxk”'”ﬂi (X[L ]} — (1 o )"”X[L :] ||2}+X[L :]'-

- end while
- return L. S




F SCORES OF THREE ALGORITHMS ON THE TESTING DATASET

Statistics OLAP HOLAP P-BRP
Precision  0.8889 0.8824 0.8881

Recall 0.8955 0.8955 0.9478
F1 Score  0.8922 0.8889 0.9170
Precision  0.8089 0.8571 0.8000

Recall 0.9478 0.9403 0.9851
F2 Score  0.9163 0.9224 0.9415

AVERAGE COMPUTATION TIME OF EVENT DETECTION ALGORITHMS
OVER THREE-MINUTE TIME PERIOD

Number of PMUs | 30 100 150
Computation HOLAP | 61.78/68.46 181.50/189.25 336.27/344.58
Time (s) OLAP 7.53/15.01  9.58/17.33 16.99/24.79
(partial/total) P-BRFP 2.18/8.46 3.13/9.40 4.20/10.53

Residual PMU data matrices during voltage
events have distinctive sparsity structure

Computationally efficient PBRP algorithm is
proposed to decompose PMU data matrices

The proposed online voltage event detection
algorithm shows better accuracy and scalability

LAS
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= | = ||
+ _| + - +
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Time

Fig. 5. An example of decomposition of streaming PMU data matrix X with
corresponding anomaly scores for a voltage event.
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A UCR

Power System Event Detection via Bidirectional
Anomaly Generative Adversarial Networks

Motivation

Detecting power system events with supervised machine learning algorithms requires a
large amount of high quality training labels (confirmed events)

Event detection accuracy drops quickly as the number of training label reduces.

Develop a Bidirectional Anomaly Generative Adversarial Network (Bi-AnoGAN)-based event
detection algorithm, which does not depend on a large amount of high quality event labels.

Main Ildea

Learn two mapping functions that project PMU data samples during normal operating
conditions to the noise space and then back to the PMU data space.

A large reconstruction error and discriminator loss — it is very likely that the new PMU
sample corresponds to a system event.

Improve computation efficiency with the design of Bidirectional GAN (BiGAN) by training an
additional encoder network that can directly map a PMU data sample to the noise space.
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Overview of System Event Detection Framework

Pre-process historical and Online PMU streaming data

Historical ’
Streaming

Offline Training

—_—

i~

Sample Set X

GSP Filtering

I——
Batch Training

Sliding samples of
historical PMU streaming

Encoder

Generator

Discriminators

Dxz. Dx, Dz

BiGAN

v

Online
Streaming

Online Event Detection

Online Streaming
PMU data

Reconstructed
Streaming PMU data

= Discriminator

Trained

Dxz
1
Discriminator
¥ Loss Lo

Anomaly Score

v

2PQ Residual
=(VE . Loss Le
Time -
Trained
» Generator G |~ 5 )
ynamic
Encoder E Threshold

Step 1: Pre-process historical and online
streaming PMU data

Step 2: Offline training. Train an encoder E,
generator G, and discriminators D using PMU
data during normal operating conditions.

Step 3: Online event detection.

(1) Calculate the difference between original streaming
PMU data and the reconstructed PMU data

(2) Calculate discriminator loss (Does incoming PMU
sample come from normal operation periods?)

(3) Calculate anomaly score and compare it against a
dynamic threshold
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Offline Training of Bi-AnoGAN

> Training of Bi-GAN is formulated as a min-max problem

rraliEn max V(D,E,G) = Ex_px)llogD(x, E(x))] + E;p5 [log(1 — D(G(2), 2))]

Encoder, E improves computational efficiency by directly mapping PMU data samples to the noise space

> Training of BiGAN with Wasserstein loss

r};nbp %leal))( sz(Dth E, G) = [Ex~p(x) [sz(xr E(x))] _ IIEzfvp(z) [ sz(G(Z): Z)]

The 1-Lipschitz constraint on the discriminator function mitigates mode collapse problem and improves
convergence of the training process

»  Encourage cycle consistency by adding conditional entropy constraints

Add V,(Dy, E, G) = By [Dx(0)] = Eopiey :Dx (G(E(x)))] to enforce x = G(E(x))

Add V,(D,, E, 6) = Eyp()[D1(2)] = Eepn) :DZ (E(G(z)))] to enforce z = G(E(2))

»  Final objective function

min DxTz?sz[VxZ(D"’ E,G)+V,(Dy,E,G)+V,(D,E, G)]
12
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i 1 Anomaly Score Monitor

Event Detection

Anomaly Score Calculation L = AL; + (1 — A)L,

PMU data reconstruction error L; = ||x — G(E(x))||,

Event
Detection

The discriminator loss L, = BCE(D,,(x, E(x))). BCE: binary cross-entropy loss function.

Dynamic Threshold for Anomaly Score

Threshold = mean(L;_gp.t—1) + ¢ X std(Li—g0:t—1)

c is a hyper-parameter
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Numerical Study Setup and IIIustratlon

»  PMU Dataset
187 PMUs from Eastern Interconnection
May 2016 — December 2017

807 voltage events, 82 frequency events

»  Training Dataset for Bi-AnoGAN
First operation day’s PMU data in a half year

»  Size of training sample
A window size of 1 second

3D tensor: 30 time stamps, 179 PMUs, 4
channels

Number of training samples in a day 86400

> Training Setup
Learning rate: 1e-4
Batch size 256

8 hrs of training time on NVIDIA GeForce RTX
2080 Ti GPU

Real Power (MW) : : Real Power (MW)

0 20 40 &0 80 100 120 140 160 180 200 230 240 0 20 40 &0 80 100 120 140 160 180 200 230 240
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Voltage-Related Events
Normal System Operating Conditions
Frequency-Related Events

Results and Summary -

TABLE 1V .

ACCURACY OF DETECTION FOR VOLTAGE-RELATED EVENTS

Bi-AnoGAN OLAP  GSP-based AnoGAN .
True Positive 584 534 561 512 k.
False Positive 42 67 138 17
False Negative 23 73 46 95
Precision 93.29% 88.89% 80.26% 86.92%
Recall 96.21% 89.55% 92.42% 84.34%
F1 Score 94.73% 89.22% 85.91% 85.61%
TABLE V

ACCURACY OF DETECTION FOR FREQUENCY-RELATED EVENTS

Fig. 7.
related events, and normal system operation conditions.

Noise space representations of voltage-related events, frequency-

Bi-AnoGAN  OLAP  GSP-based AnoGAN
True Positive 82 12 71 75 Event Start Time -= @ Event Start Time ->= @
False Positive 5 56 19 46 30
False Negative 0 10 11 7
Precision 94.25% 53.33% 78.80% 61.98% o 2 40
Recall 100 % 88.89% 86.59% 91.46% S i
Fy Score 97.04% 66.67% 82.56% 73.89% g 2 * £l
g 2
E 1 g £ 1
3 ; S |Ve o @ 20
TABLE VII 1
AVERAGE RUNTIME OF DIFFERENT ALGORITHMS FOR EVENT DETECTION 1 c. ] ° 10
«
Bi-AnoGAN  OLAP  GSP-based AnoGAN L= ) . . - . o . . 0
B - - Companent One Component One Time (s}
Voltage Events 13.59 s 2175 s 7.16 s 876.58 s
Frequency Events 1347 s 2098 s 731 s 843.89 s . ) . ] ]
Fig. 8. Noise space representations of 1-minute samples surrounding the

event. The left subfigure is a voltage-related event and the right subfigure is

<2 ms for processing each snapshot of PMU data sample a frequency-related event.

Pros of Bi-AnoGAN: Computationally efficiency, do not need labels, high detection accuracy.

Cons of Bi-AnoGAN: Network architecture needs to be appropriately designed to avoid non-
convergence and instability. P
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System Event ldentification: Overall Framework

» Formulated as a classification problem

Normal operation condition, line event, generator event, oscillation event

> Input: 3 dimensional tensor POIV|f —
Time, PMU ID, and PQ|V|f measurement PMU " I V]
Q
> Overall Framework P
l Time
PMU data Event type
— GSP based
mp| evu || Classifier | & “
. 8 sorting

Information loading
based regularization

> Three key modules
CNN-based Classifier, GSP-based PMU Sorting, Info. Loading-based Regularization
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Graph Signal Processing-based PMU Sorting

> Motivation
> Make parameter sharing scheme of Convolutional Neural Classifier more effective

> Main ldea
»  Strategically place highly correlated PMUs close to each other

> Solution
> Systematically rearrange PMUs in the input tenors with GSP-based PMU sorting algo.
AN OV 2 Visualization of Spatial Correlation
m&“izi=1 z,-=1 Wi (di — d) Matrix of PMU Measurements

Unsorted Sorted

Subjectto d'd =1
d’1=0

Algorithm 1: GSP based PMU sorting algorithm

1 Obtain the Pearson correlation coefficients between
PMUs:
2 Construct weight matrix W and Laplacian graph L:

3 Take eigendecomposition of L;
4 Sort PMUs according to the eigenvector corresponding
to the second smallest eigenvalue of L;

==
o
|
=
2
s
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Information Loading-based Regularization

» Background
Abstract Representation of Deep Neural Network based Classifier
Classifier

y X Z R
Py ]—' Px|y i?] Encoder " Estimator H—

» Main Ildea

Control the amount of information compression between the input layer and the last
hidden layer of a deep neural network

Balance memorization and generalization

-
-
-
-
’

-
e
e
-
-

Low entropy input High entropy input

Mutual information
Mutual information

feature space  =| /[ 1(Y;29) feature space £ // [—= 1(Y;27)
——1(Y;2) — I(Y;2)
1(X;Z) 1X;7)

> Algorithm

Augment the typical cross-entropy loss function with estimated mutual information
between the input layer and the hidden representation

Lr=Lcp—BI(X:2) 18



Overall Neural Network Architecture*

> Neural Classifier, Mutual Information Estimator,

)
Cross CE
X1 —[ Encoder }74[ Estimator H Entropy ]— +

n\ Classifier
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J{ on |
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| )
[
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o
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I
(40
X
e
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- s s s e

*J. Shi, B. Foggo, and N. Yu, "Power System Event Identification based on Deep Neural Network with Information Loading,"

IEEE Transactions on Power Systems, vol. 36, no. 6, pp. 5622-5632, Nov. 2021.
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Numerical Study Results

» Dataset Description
2 years of PMU data from Eastern Interconnection
1247 labeled Events, 187 PMUs (Training, Validation, Testing)

> Data Augmentation
TABLE I: Distribution of PQ|V'|f snapshots

10 seconds 10 seconds

1 I
[ \ 1

Class Non-event Line-event Generator-event Oscillation-event

Labeled event sta rting time
Y / # of snapshots 720 825 756 708

12 seconds
lllustration of Sub-tensor Sampling

» Performance on Validation Data

1.0
0.9 - |
=N
E 0.8 Baseline+GSP+info
o 0.7 Baseline+GSP
o 0.
< Baseline+info
0.6 Baseline
05 - T T T T T T
0 25 50 75 100 125 150 175 200 20
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Testing Results and Learned Representation

> F1 Scores on Testing Dataset

. Generator  Oscillation
Non-event  Line-event

event event

Baseline 0.554 0.879 0.881 0.208
Baseline+info 0.596 0.928 0.924 0.205
Baseline+GSP 0.894 0.937 0.907 0.922
Baseline+GSP+info 0.973 0.971 0.962 0.986

> Learned Representation

Comparison of representations of different ML methods after linear dimension reduction

’ M ~..
e Non-event 4 T T
i - A, P
Line-event -— M e T
Generator-event S R
Oscillation-event " T,
2 vy 7 W" :ﬁ' b
3 . * :ﬂﬁﬂ' ‘?‘
. . * v . * r td- ‘3
: : L PR Lo R - & o
R \ e W S i WL :
v T b4 ‘nr ¥ - - Sl bt =% : 2 #
. e LA v‘v"" . . ‘ . . . T . ‘ﬁ'.w.
(a) Baseline. (b) Baseline+info. (c) Baseline+GSP. (d) Baseline+GSP+info.
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Summary and Extensions

>  Summary

Off-the-shelf ML algorithms often do not work well
Physical-domain knowledge + deep learning is heeded

Information loading helpful in balancing memorization and generalization

> Extensions

Transfer Learning: PMU and event log data from one electric grid provide useful info. in
analyzing the behavior of another electric network

Adversarial attacks and defense: easy to add tailored noise signal to fool event classifier

107 Example of a small perturbation computed by DeepFool that make the model misclassify
087 from normal operation behavior to generator event
%06
3 i . . Original Sample: X, L2 Norm: 242.98 Perturbation: ), L2 Norm: 0.53 Perturbed Sample X+n, L2 Norm: 242 97
2047 Without Transfer Learning et ower (zscore)
024 N a5 d 2_:
— 18 —-- 144 —-- Half == Full -
0.0+ T T T T T T T . S05g 6 1% w0 a8 350
0 25 50 75 100 125 150 175 200 Reactive Power (Zecore) o e
Epoch a0 R _ § ab : i ' R
1.07 T ——— ) e B e it ol o 50 - e age ot (zecy 0 A
VAR R (R s L o A A s . S Lo ol "" R Y e
0.8 1 J/ :: a0 :: o e _, ™ 'f AT ;.-.‘-
= 0.5 100 150 200 250 300 s a 50 100 150 200 250 301 =
E 0.6 as Frequency (Zscore) T Frequency [Zecore) T
3 . . 1 1
FRYE With Transfer Learning o . 0 e
0.2 0 50 100 150 200 250 300 I]_S'?I__‘ =03 0 50 100 150 200 250 300 I]_S'?Ih‘ 0 50 100 150 200 250 300 I]_S'?Ih‘
004 — U8 - 14— Hall e P ooss: Normal Behavior, Confidence: 99.49% Class: Generator Event, Confidence: 67.75%
‘ 1] 25 50 75 100 125 150 175 200 22
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Synthetic Power System Event Data Creation
> Why do we need synthetic PMU dataset?

Researchers/developers of machine learning algorithms for transmission system always
identify the lack of large-scale and realistic PMU data set as a bottleneck for innovation

>

Security concerns, common problem for both academia and industry

Benchmarking across algorithms is hard when they’re all tested on different data

» Is PMU data generated from dynamic simulation sufficient?

Advantages

>

>

PMU data generated is consistent with simulated dynamic system

Simulation model can be configured to answer any hypothetical research questions

Disadvantages

>

>

>

IEEE dynamic test cases can not match the complexity of real-world transmission systems
Parameterization of generic models (e.g. renewables) are extremely difficult to match observed dataset

Lack realistic details (PMU data in response to real-world events often can not be easily emulated by
dynamic models, noise, missing values, outliers)

23



pmuBAGE: The Benchmarking Assortment of
Generated PMU Events*

> pmuBAGE: the result of training a generative model on ~1,000 real-world power
system events in the Eastern Interconnection.

»  Publicly available at hitps://github.com/NanpengYu/pmuBAGE

»  Advantages: accessibility, homogeneity of results & unprecedented level of realism
»  Contains 84 synthetic frequency events and 620 synthetic voltage events

» 4 channels (PQJ|V|F), 20 seconds event window length, 100 PMUs

» Key ldeas

Decompose PMU data during an event into: Event Signatures and Participation Factors

Event signatures can be separated into two types: inter-event and intra-event
Physical event signatures are PMU private and are used directly
Statistical participation factors are synthesized with generative model

* B. Foggo, K. Yamashita, N. Yu, “pmuBAGE: The Benchmarking Assortment of Generate PMU Events — Part | and II”
https://arxiv.org/abs/2204.01095 24


https://github.com/NanpengYu/pmuBAGE

pmuBAGE - Frequency Events
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pmuBAGE frequency event An actual frequency event

The interval between two time indices is 1 / 30 seconds.
The presented data is scaled to per unit values.
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pmuBAGE - Sample Voltage Event

004

0.03

o 100 200 300 400 500 600 o 100 200 300 400 500 600

o 100 200 300 400 500 600 o 100 200 300 400 500 600

An actual voltage event pmuBAGE voltage event

The interval between two time indices is 1 / 30 seconds.
The presented data is scaled to per unit values.
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>

Event Signature

\ £ UCR

The Evet-Participation Decomposition*

Decomposes PMU data in an event window into

A dynamic component shared by all PMUs — the Event Signature
A static component which varies by PMU — the Participation Factor
04 175
0.3 150 12
0.2 < 125 i 1.0
0.1 5 100 a 05
'E =
00 2 m || £ 00
: II
-0.1 0.5
25
02 . Illlllll-- ________ | -
0 2 4 6 8 10 0 1 2 3 4 5 6 0 2 4 6 8 10
Time Participation Factor Time

»  Properties of Physical Event Signatures

Depend on all PMUs, but don’t depend much on any single PMU.
Event signatures are PMU private and can be used directly to generate synthetic PMU data.

»  Properties of Statistical Participation Factor

Participation factors are not PMU private by definition.
They must be synthesized

* B. Foggo and N. Yu, "Online PMU Missing Value Replacement via Event-Participation Decomposition," 27
IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 488-496, Jan. 2022.



Overall Framework: Generating synthetic PMU data

- _ T
F.

( R:JE?ST‘:I » Decompose event signatures into 2 types
7 Inter-Event Signature
I{Generate} > Appear repeatedly across events with little variation
(Train) ana Event > The corresponding participation factors are statistically simple
' Generator > Inter-Event participation factors ~ Multivariate Gaussian after

oFe simple transformation

/\I ntra-Event Signature /

Event .

Measured — Synthesized

—» Participation Sum

PQVF Data e \ PQVF Data
Inter-Event Signature

PFs

' Intra-Event Signature

! Inter Event )

'ﬁ":-j F’;g':é?:tt";ﬂ > Unique components of an event

rain)
I (Generate) > The corresponding participation factors are more complicated
VN > Generated via a deep generative probabilistic program
/ Random .
| Noise | > Key architectural components
j.
— Feature extraction maps with cascaded convolutional network

Loss function with feature mapping and quantile loss



Correlation Analysis and Inception-Like Scoring

Correlation Across PMUs

Correlation Across Events
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> Quality of generated PMU data samples measured by “Inception-like score’
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Max correlation between synthetic and
real events is 0.25

No historical events used to train the
model are compromised

Max correlation between synthetic and
real PMU measurements is 0.205.

No PMUs used to train the model are
compromised

Train a standard ResNext model to classify event types of labels “frequency” and “voltage”

200 epochs of training with a batch size of 50 with Binary Cross Entropy loss function

Training-Testing Accuracy F1 F2

Synthetic-Synthetic 99.9% 94.3%  93.3%
Synthetic-Measured 94.3% 94.2% 92.8%
Measured-Measured 99.8% 94.4% 91.2%
Measured-Synthetic 93.2% 94.3% 92.7%

b

No significant degradation in F1 or F2
scores in cross-comparison compared
to self comparisons.

pmuBAGE may serve the community
as a standard benchmarking tool for

event detection and classification.
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Lessons Learned and Next Steps

> Lessons Learned
Off-the-shelf machine learning models are often not sufficient

Physics-based machine learning is the key to developing breakthrough technology in
power system data analytics.

The availability of real-world (synthetic) power system data is critical to the accelerated
development and benchmarking of data-driven algorithms.

> Next Steps
Pilot demonstrations with partner institutions (EPRI and EPG)
Deeper integration of physical power system model with machine learning algorithms
Interpretable machine learning models for PMU data analytics
Making artificial intelligence algorithms actionable in bulk power system
Safety and robustness of ML in critical infrastructure systems (bulk power system)

Closer collaboration between artificial and operator intelligence
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