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Conceptual Models of TSO-DSO Coordination
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Fig. 1. TSO-managed model Fig. 2. TSO-DSO hybrid-managed model

Fig. 3. DSO-managed model

Source: A. G. Givisez, K. Petrou and L. F. Ochoa, A Review on TSO-DSO
Coordination Models and Solution Techniques. Electric Power Systems Research, 189
(2020) 106659
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m Direct load control (DER aggregation)
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m Price-based control (between DSO and DERs)
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Utilizing DERs: Four Approaches

Direct load control (DER aggregation)

DSO-operated wholesale-style market — DLMP

m Price-based control (between DSO and DERs)

Peer-to-peer trading (among DERs and consumers) over
shared networks — Our focus
m Continuous-time trading: continuous double-auction

m Discrete-time trading (by rounds, x-hour ahead) — This work

6th NREL Autonomous Energy Systems Workshop



Background and Motivation
[e]e]e]ele] lele]

A Conceptual Peer-to-Peer Retail (Local) Energy Market
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Source: https://100percentrenewables.com.au/peer-to-peer-energy-trading/
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Potential Issues of P2P Energy Trading

m Consumers/prosumers do not have the expertise, nor the time to bid, say,
every hour
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Potential Issues of P2P Energy Trading

m Consumers/prosumers do not have the expertise, nor the time to bid, say,
every hour — Solution: control automation

m A wholesale-market-like uniform price auction will NOT work:

- All zero-marginal resources

- Consumers/prosumers do not know there own valuation of energy
consumption/generation (due to zero marginal cost)

- Uncleared demand in a P2P market need to buy from utility/DSO at the
utility rate (UR); uncleared energy from DERs need to sell to utility/DSO
at feed-in tariff (FIT) (UR > FIT) — UR and FIT are then de facto reserve
prices of P2P trading, which are publicly known! = Any double-auction
design will lead to bang-bang outcomes (unless supply: = demand;).
[Zhao et al., 2022]

m P2P tradings only financial transactions; how to deal with shared network
constraints — Solution: Add (fake) financial penalties for constraint
violation in learning algorithms
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Alternative Market Clearing Mechanism  SDR [Liu et al., 2017]

Supply-Demand Ratio

Let b;: be bid/ask of agent i at time t:  URN - omrtiisiiosiosseoeeeoeeeeee
bi ¢ > 0 (sell); bj; < 0 (buy). The supply-
demand ratio (SDR):

E it PN FUTTOTRRII

i€ESt

SDR; := . :
- it FIT [ ===mmemmmmmmmemnees —
Sk 0 spr, 1 SDR

6th NRE onomous Energy Systems Workshop



Background and Motivation
0000000e

Supply-Demand Ratio

Let bj; be bid/ask of agent / at time t:
bi ¢ > 0 (sell); bj; < 0 (buy). The supply-
demand ratio (SDR):

Alternative Market Clearing Mechanism  SDR [Liu et al., 2017]

Market Clearing Price under SDR

{(F/T — UR)-SDR:+ UR, 0<SDR, <1

Pt = P(SDRt) = IT
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Single-agent (Agent i's) RL Problem

State Variables (in continuous space)

Sip = (d,.‘?t, dft, Vi.ts €t, PVit) € Sy — (baseload real power, baseload reactive power,

voltage magnitude, battery state of charge, PV (real power) generation)

6th NRE tonomous Energy Systems Workshop



MARL Frameworks
[e] lelelele]ele)

Single-agent (Agent i's) RL Problem

State Variables (in continuous space)

si,e i=(dP, d7, vie, e, PVit) € Sy — (baseload real power, baseload reactive power,
voltage magnitude, battery state of charge, PV (real power) generation)

Action (in continuous space)
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Single-agent (Agent i's) RL Problem

State Variables (in continuous space)

Sip = (d‘.‘?t, dﬁt, Vi.ts €t, PVit) € Sy — (baseload real power, baseload reactive power,

voltage magnitude, battery state of charge, PV (real power) generation)

Action (in continuous space)

ajy = (a},,af,) € A; = A7 x A¢ — (reactive power injection/withdraw, energy
charge/discharge) (Underlying assumption: PV /battery connected to a smart inverter:
can set reactive power setpoints within a range)

The actual bids = net energy of PV generation minus baseload demand (of real
power) and charge/discharge to the battery:

b+ =

)

AP e &i—Eit e e
{i\/,’t di,t mln(ai,t, 7 ), |fai7t20,

P d q
Vie—df, — max(aﬁt, —ej:-nf), otherwise,

where 7¢ and 7],‘7 are the charging and discharging efficiency of agent i's battery, resp.,

and €; is the battery capacity.
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State Transition and Reward Function

Battery state of charge (e&; ¢)

1

. 1 . _
eit+1:= Ei(eir, af,) = max { (ﬂn [ﬁ’t +ni max(af ;,0) + n—d min(a; ;, 0), e,-] ,()},(
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State Transition and Reward Function

Battery state of charge (e )

. 1 . _
eit+1:= Ei(eir, af,) = max { (ﬂn [(t +ni max(af ;,0) + n—d min(a; ;, 0), e,-] ,()},(

1

Reward function

rie = R (a7 1% 4o 5t) + RY(aie a—ie,5t)/ 1

)

(B, X [QDRt :Pe b+ (1= SDR:)- UR- by]

/(t~b,-,t), <O§SDR} <1

1; X
Rir,nt = =

FIT - b, SDR: > 1,
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Reward Function (cont.)  Constraint Violation Penalty

RY/T==XY [6ax(o, [Viel = V) + max(0, ;= [V, c)] (,

Jj:Bus

m | — the no. of agents, A — an arbitrary large number (the fake penalty for

voltage violation)
m Assumption — The voltage violation is equally shared among all agents (again,

this is NOT real, only for training)
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Jj:Bus
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m | — the no. of agents, A — an arbitrary large number (the fake penalty for

voltage violation)
m Assumption — The voltage violation is equally shared among all agents (again,

this is NOT real, only for training)
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Reward Function (cont.)  Constraint Violation Penalty

RU/I==X% [Gax(o, [Viel = V) + max(0, ;= [V, c)] (,

Jj:Bus

m | — the no. of agents, A — an arbitrary large number (the fake penalty for
voltage violation)

m Assumption — The voltage violation is equally shared among all agents (again,
this is NOT real, only for training)

m If voltage violation > 0, all bids are rejected; agents resubmit bids

m V//VJ: upper/lower voltage limit of Bus j

m V;:: voltage magnitude at Bus j after each agent makes the decision, calculated
by solving a bus injection model — Bids validation (done by DSO or Blockchain)

N

Pe = Z (Vk||\/j|(ij cos(ay — o) + Byjsin(a — o)),
j=1
N

ak = > [VilIVjI(Gig sin(au — aj) — Byj cos(a — ),
j=1

fork=1,2,...,N,
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MARL with Continuous State & Action Spaces

It's all about policy gradient!

For a generic policy m(als, #) and a performance measure J(6),

—

Gt-‘rl == 91} + aVJ(Gt)
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Three MARL Frameworks

Middle Ground: Consensus-
based, decentralized actor-

CHCIMARE Centralized
Completely decentralized Learmr;Eg/ Decentralized
learning/execution — Each peer maintains an estimate xecution
of the centralized critic function - Centralized critic (action-value)

function estimation (need other
-- No communication among peers -- Update the estimates through agents’ policies)

neighbors to reach a consensus - Decentralized actor (policy) update

-- Decentralized actor (policy)
update

16/ 26
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Three MARL Frameworks The Details

Performance measure J

-
- Pure decentralized and MADDPG J;(6;) = Er,, [Z tri el
t=0

11
- Consensus: J(0) = Er, [('inoo T Z ( 7 Z (i,t>:|

t=0
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Three MARL Frameworks The Details

Performance measure J

-
- Pure decentralized and MADDPG J;(6;) = Er,, [Z tritl
t=0

11
- Consensus: J(0) = Er, [4':’000 T Z ( 7 Z <t>:|

t=0 =1

Policy Gradient

- Purely decentralized: Vg, J(6;) = ]E5~p9,a;~7r9,- [V, log mo,(ai|si) QF (si; a;)] <PPO
implementation: [Feng et al., 2023])

- MADDGP: Vg, J(0;) = Es~p9,a,-~779,. [VQ,, log g, (ailsi) Q (s; a1, - - - ,a/)] (
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Three MARL Frameworks The Details

Performance measure J

-
- Pure decentralized and MADDPG J;(6;) = Er,, [Z tritl
t=0

1,1
- Consensus: J(0) = Er, [4':’000 T ;0 ( 7 2. <t>:|

Policy Gradient
- Purely decentralized: Vg, J(0;) = E 0 5., [V, log o, (ai|si) QF (si; a;)] <PPO

implementation: [Feng et al., 2023])
- MADDGP: Vg, J(0i) = E; 0 5y [V, log o, (ailsi))QF (s; a1, - .., ay)] g}

- Consensus: Expected policy gradient (EPG) Vg, J(6;) = Eopt o jmmy | i(s, a_i),

where IG?(S, a_j)= Eai,wrgl_ Vo, log 7o, (aj|s) Q" (s; a1, - - -, ar).
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Three MARL Frameworks The Details

Performance measure J

-
- Pure decentralized and MADDPG J;(6;) = Er,, [Z tritl
t=0

1,1
- Consensus: J(0) = Er, |:§|i’r‘loo T ;0 ( 7 2. <t>:|

Policy Gradient
- Purely decentralized: Vg, J(0;) = E 0 5., [V, log mo,(ai|si) QF (si; a;)] <PPO

implementation: [Feng et al., 2023])
- MADDGP: Vg, J(0;) = Es~p97ai~ﬁ0' [Vg/, log g, (ailsi) Q (s; a1, - - - 731)]
- Consensus: Expected policy gradient (EPG) Vy,J(6;) = B pt o jmmy | “(s,a—i),
where IG?(S, a_j)= Eai,wrgl_ Vo, log 7o, (aj|s) Q" (s; a1, - - -, ar).
To deal with the centralized critic function, each agent i use Q(a;, a_j; wi ;) to

approximate Q7 (s; a1, ...,a;). Agent i use weighted average of w{, all j's'in i's
neighbor, to obtain w; ;..
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lllustration of the Consensus MARL Igorithm

Distribution
network & P2P
market
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Actions 2:
Reactive power production,
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Actions 1:
Reactive power production,
charging/discharging

(Value
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Activelreactive power of base N Activelreactive power of base
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critic networks

6th NREL Autonomous Energy Systems Workshop



Numerical Results
©0000000

Part |l — Numerical Results

6th NREL Systems Workshop



Numerical Results
0Oe000000

Simulation Inputs

Power Station . 650

Transtormer /Qi/v
646 645 632 633 } { 634
611 684 671 692 675
L L L
652 @ 650

Figure: Test case: IEEE 13-bus feeder

m UR and FIT: Pyg = 14 ¢/KWh, Pgr =5 ¢/KWh.

m Agents: 12 prosumers, one at each bus (except the substation)

m PV and storage per agent: PV: 30KW, storage: 50KWh, charging/discharging
efficiency: 0.95/0.9
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Numerical Results
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Figure: Daily PV output shape
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Numerical Results Rewards and Voltage Violation

—— Consensus
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—— MADDPG
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Figure: 30-epi. moving avg. of
episodic total reward
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Numerical Results Rewards and Voltage Violation
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Market Clearing Price (under
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Figure: Hourly clearing prices (the last 3 days)
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Summary and Future Research

m MARL is promising in P2P energy trading

- Can realize control-automation
- Decentralized learning among networked agents can learn to
avoid constraint violation

6th NREL Autonomous Energy Systems Workshop



Numerical Results
00000800

Summary and Future Research

m MARL is promising in P2P energy trading

- Can realize control-automation
- Decentralized learning among networked agents can learn to

avoid constraint violation
m But, the devil is in the details!

6th NREL Autonomous Energy Systems Workshop



Numerical Results
00000800

Summary and Future Research

m MARL is promising in P2P energy trading

- Can realize control-automation
- Decentralized learning among networked agents can learn to
avoid constraint violation

m But, the devil is in the details!

Future Research

m Scalability

m Cybersecurity: Byzantine agents [Figura et al., 2021]

m Real-time implementation (need to couple with demand and solar
prediction)
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Thank you!
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