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Power Hardware-in-the-Loop (PHIL) Simulation
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Create a Virtual yet Realistic Environment to Rapidly 
Test Equipment and Interfaces: PHIL

• Couple Device Under test (DUT) to a Real 
Time Computer Simulation using amplifiers 
and/or actuators (preserves natural coupling)

• Use of PHIL Simulation
• Testing in Realistic Environment
• Early integration testing
• Flexibility to quickly change surrounding 

system and conditions to test equipment 
performance envelope

• Validate System Specification & Interfaces
• Testing with yet unrealized system
• Test extreme conditions within controllable 

lab environment

CAPS RT Simulators
• RTDS Novacore (9)
• SpeedGoat (2)
• Typhoon HIL (3)
• Opal-RT (2)

Emulated Electric Plant



Co-Simulation

• RTDS 9x 10-NovaCors
• (35) x86-64 servers
• (30) Xilinx-based FPGA
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• Portion of model on real-time simulator (RTS) and 
portion of model on co-simulation machines

• Model on co-sim machine executes faster than 
real time – clocked from RTS

• Model on co-sim machine can execute in native 
software package (e.g. MATLAB/Simulink, nVe, 
compiled executable, etc.)

• Useful for
• Protected vendor models that cannot be 

ported or re-compiled for RTS as target
• Complicated models that are difficult to 

manually port
• Models with subsystems allowing larger 

time-step sizes (e.g. generator set with prime 
mover, AVR/exciter, and synchronous 
machine)

• Controls
• FPGAs used for high-speed digital link between 

co-sim machine and RTS



5 MW PHIL Facility Overview
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• 4 Scalable PEBB-based Power 
Units

• Bidirectional Power Flow
• Ungrounded or Neg. Rail 

Grounded

Each Unit: 
± 0 – 6 kVdc, ± 0 – 0.21 kAdc

• Various Parallel/Series 
combinations

• All in Parallel: 6 kVdc, 0.8 kAdc

• All in Series: 24 kVdc, 0.21 kAdc

100 kW per
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PAU Specs
• Bidirectional Power Flow
• Ungrounded or 

Grounded
• 15 kV class
• 0 – 8.5 kVllrms

• 0 – 200 Arms

• 0 – 450 Hz
• fs = 84 kHz effective

Configurations
• Single AC or DC
• Dual AC or DC
• AC and DC combo
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Recommended Practice for Hardware-in-the-Loop (HIL) Simulation Based Testing 
of Electric Power Apparatus and Controls – IEEE WG P2004

Michael “Mischa” Steurer pioneered HIL and 
initiated IEEE WG P2004.

• Chair: Georg Lauss 
georg.lauss@ait.ac.at , +43-50550-6283
Austrian Institute of Technology, Vienna, Austria

• Secretary: Blake Lundstrom 
blakelundstrom@gmail.com , +1-303-275-4385
Enphase Energy, Fremont, CA, USA

• Sponsor: PELS, Co-sponsor: IAS, IES
• Collaboration: PSRC WG CTF-33; IEEE task force (TF) on “Real-

Time Simulation of Power and Energy Systems”, chaired by Dr. 
Omar Faruque, under IEEE WG 15.08.09 (within the General 
System Subcommittee of the IEEE PES T&D Committee)
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Generator Testing – Constant Power

James Langston
Langston @ caps.fsu.edu

Karl Schoder
Schoder @ caps.fsu.edu

7



Generator Testing Motivation

Improve (cost) efficiency of backup generation
– Re-rate and save on units required
– Hardware of interest: diesel generator (DG) with 

13.8 kV, 60 Hz, 3.5 MVA

Testing DG with increased generation capacity 
at increased power factor

– 2.8 MW @ 0.8 p    3 MW @ 0.98 pf

Factory Acceptance Test (FAT) shows DG able 
to handle 0-100% block loads w/ load bank

– FAT with load banks not reflecting application load:
– Feasible for constant power loading? 

• First of its kind: generator + PHIL constant power load

8PHIL 3 MW Diesel Generator, ESTS 2023
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PHIL Setup
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Hardware components
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3 MW, 13.8 kV Diesel Generator Set

• Tested 3 MW, 13.8 kV DG
• PHIL Interface

– DQ-frame DIM IA
– Optimus amplifier 

configured for 13.8 kV AC, 
current control mode

• Studied response to 
dynamic changes in 
constant-power loads

– Generator handled 100% 
constant-Z load step

– Generator could only 
handle 70% constant-P 
load step

– Experiment gracefully shut 
down without tripping the 
generator

10
13.8 kV, 3 MW DG

Constant-Z 
(75%)

Constant-P 
(70%)

Constant-P 
(75%)

Schoder, K., et al. "Dynamic Load Testing of a 
Diesel Generator Using Power Hardware-in-the-
Loop Simulation." 2023 IEEE Electric Ship 
Technologies Symposium (ESTS). IEEE, 2023.



Virtual DIM
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Damping Impedance Method
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• Damping Impedance Method (DIM) interface 
approach (IA) commonly used in cases in which 
the ITM IA may not be stable

• If the damping impedance is closely matched to 
the HOI impedance

• Guarantees stability 
• Generally shows high accuracy

• Potential issue with DIM IA if the HOI 
impedance is not easily represented by passive 
network (e.g. power converters in the low 
frequency range)

• Virtual DIM offers more flexibility – modeling 
arbitrary transfer function

• Delays may affect representation of 
damping impedance at higher frequency

• Partial Virtual DIM combines flexibility of virtual 
DIM with better representation of damping 
impedance in the high frequency range

Will be presented at IECON’2024.
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Virtual Damping Impedance Method
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Consider Partial Virtual Impedance
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Application that benefits is to 
explicitly represent high frequency 
portion of impedance (which may 
well be represented by a passive 
network) 
…along with a low-frequency MOI 
injection model, which may 
represent control behavior and not 
be well modeled by a passive 
network.

Z1
*ID
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VA

ZA

Partition Z* into two components where, for 
example, Z1* captures high frequency behavior and 

Z2* captures low frequency behavior.
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PV-DIM

This method separates explicit impedance and ideal impedance.
It possess high stability and ease to introduce impedance characteristic.

ZBL ZBH 

ZBL ：low-band frequency
ZBH ：high-band frequency 

𝑒𝑒−𝑠𝑠𝑠𝑇𝑇𝑑𝑑𝑍𝑍𝐵𝐵∗

𝑍𝑍𝐴𝐴

𝑒𝑒−𝑠𝑠𝑠𝑇𝑇𝑑𝑑𝑍𝑍𝐵𝐵𝐵𝐵∗

(𝑍𝑍𝐴𝐴+𝑍𝑍𝐵𝐵𝐵𝐵)

V-DIM open-loop gain

PV-DIM open-loop gain

Virtual impedance : Z’B

Where, ZBL + ZBH = ZB



Multi-Phase Linear Analysis
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Motivation
Generalized linear analysis of interface algorithms for multi-phase applications.

• Current practices 
– Custom analysis specific to the case study and PHIL Interface Algorithm (IA) 
– Conduct multi-phase PHIL without proper assessment of stability, accuracy and 

sensitivity

• Application and analysis of PHIL experiments utilizing linear analysis 
framework has been conducted for single phase interface system[1] but 
not for multi-phase systems

• Builds on Extended Lawrence Architecture (ELA) framework

• Useful framework applicable to PHIL experiments independent of IA
– Successfully applied to a project

17[1]. James Langston, “APPLICATION AND ANALYSIS OF THE EXTENDED LAWRENCE TELEOPERATION ARCHITECTURE TO POWER HARDWARE-IN-THE-LOOP SIMULATION” PhD dissertation, FSU 2018.



Current Multi-Phase PHIL Analysis Methodology
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• No common framework for analyzing different IA for a given PHIL experiment[4] 
• Hence deriving expressions and analyzing stability, accuracy and sensitivity limited to 

specific experiment being conducted

[4]. T. Hatakeyama, A. Riccobono and A. Monti, "Stability and accuracy analysis of power hardware in the loop system with different interface algorithms," 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, 2016



Linear Analysis Framework Using ELA 
for Single Phase PHIL System
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Example PHIL Simulation Employing IA of ELA[5] Example PHIL Interface

Compact formulation of PHIL experiment in terms of ELA[5]

Gsys – Mapping from inputs and stimuli to observable quantities
Gint – Represents PHIL interface
Gm – Effect of voltage and current sensors
GIA – IA gains
Gstim – Effects of amplification and stimulation injections
dm – Noise at sensors measurements
damp – Disturbance introduced through amplifier

[5]. James Langston, Karl Schoder, Michael Steurer, Chris Edrington, and Rodney G. Roberts, ‘Analysis of linear interface algorithms for power hardware-in-the-loop simulation’, IECON 2018

MOI HOI

MOI HOI



Linear Analysis for Multi-Phase PHIL experiments
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Gint

ELA extends to formulation of multi-phase PHIL experiments.
Unified structure for variations in phases.

Will be presented at IECON’2024.
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