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Selected challenges in future power systems

® conventional power systems ¢ future power systems
— dispatchable generation — variable generation
— significant inertial response — reduced inertia levels
— fast frequency & voltage control — ancillary services for frequency & voltage
provided by bulk synchronous generation provided by distributed energy resources (DERs)
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Selected challenges in future power systems

® conventional power systems ¢ future power systems

— dispatchable generation — variable generation
— significant inertial response
— fast frequency & voltage control

— reduced inertia levels
— ancillary services for frequency & voltage
provided by bulk synchronous generation provided by distributed energy resources (DERs)

® some of the manifold challenges

— brittle grids: intermittency & uncertainty
of renewables & reduced inertia levels

— device fragility: converter-interfaced DERs
limited in energy, power, fault currents, ...

— ancillary services on ever faster time scales
& shouldered by distributed sources
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Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate a heterogeneous ensemble of DERs
to collectively provide dynamic ancillary services

Q

5/32



Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate a heterogeneous ensemble of DERs
to collectively provide dynamic ancillary services

® heterogenous collection of devices
— reliable provide services consistently across
all power & energy levels and all time scales
— none of the devices itself is able to do so

Q

S

5/32



Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate a heterogeneous ensemble of DERs
to collectively provide dynamic ancillary services

® heterogenous collection of devices
— reliable provide services consistently across
all power & energy levels and all time scales
— none of the devices itself is able to do so

® dynamic ancillary services
— fast response (brittle grids), e.g., inertia
— specified as desired dynamic I/O response
— robustly implementable on fragile devices

Q

S

5/32



Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate a heterogeneous ensemble of DERs
to collectively provide dynamic ancillary services

Q

® heterogenous collection of devices
— reliable provide services consistently across
all power & energy levels and all time scales
— none of the devices itself is able to do so

® dynamic ancillary services
— fast response (brittle grids), e.g., inertia
— specified as desired dynamic I/O response
— robustly implementable on fragile devices

® coordination aspect
— decentralized control implementation
— real-time adaptation to variable DVPP
generation & ambient grid conditions
5/32



Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate a heterogeneous ensemble of DERs
to collectively provide dynamic ancillary services

® heterogenous collection of devices
— reliable provide services consistently across
all power & energy levels and all time scales
— none of the devices itself is able to do so

® dynamic ancillary services
— fast response (brittle grids), e.g., inertia
— specified as desired dynamic I/O response
— robustly implementable on fragile devices

® coordination aspect
— decentralized control implementation
— real-time adaptation to variable DVPP
generation & ambient grid conditions

Q

E: €)

motivating examples

® frequency containment provided by non-minimum
phase hydro & on-site batteries (for fast response)

® wind providing fast frequency response & voltage
support augmented with storage to recharge turbine

® hybrid power plants, e.g., PV + battery + supercap
® |oad/generation aggregators & balancing groups
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Abstraction: coordinated model matching

® setup (simplified): DVPP consisting of
— DERs connected at a common bus

— PMU frequency measurement at point of
common coupling broadcasted to all DERs

DVPP

T

{*
broadcast o
input signal DER 1 : 4 o
(PMU frequency : i S
signal at PCC) : : : 3

Y
-4
E N
&
DERn

aggregate

output signal

(active power
injection at PCC)

desired aggregate behavior
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Abstraction: coordinated model matching DvPP
® setup (simplified): DVPP consisting of
— DERSs connected at a common bus
— PMU frequency measurement at point of E -n.o
common coupling broadcasted to all DERs broadcast
input signal DER 1 P
¢ DVPP aggregate specification (ancillary service): vl i i §
— grid-following fast frequency response —7 -
(inertia & damping) l\
power = (H s + D) - frequency |:
(later: also forming + distributed + voltage ...) o*
® task: coordinated model matching DER N
— design decentralized DER controls so that the Q

aggregate behavior matches specification
Zi power, = (H s+ D) - PMU-frequency

aggregate

output signal

(active power
injection at PCC)

— while taking device-level constraints into account
— & online adapting to variable DVPP generation

desired aggregate behavior
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Nordic case study

with J. Bjork (Svenska kraftnat)
& K.H. Johansson (KTH)

AL Wind
@ Hydro
@ Thermal

NordLink

aggregated 5-bus Nordic model

7132



Nordic case study

with J. Bjork (Svenska kraftnat)
& K.H. Johansson (KTH) power 3100 - (6.53 + 1)

frequency = (2s+1)(17s + 1)

® FCR-D service — desired behavior

AL Wind
@ Hydro
@ Thermal

NordLink

aggregated 5-bus Nordic model
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Nordic case study

with J. Bjork (Svenska kraftnat)
& K.H. Johansson (KTH)

AL Wind
@ Hydro
@ Thermal

1400 MW

NordLink

aggregated 5-bus Nordic model

® FCR-D service — desired behavior
power 3100 (6.5s + 1)
frequency = (2s+1)(17s + 1)

* well-known issue: actuation of hydro
via governor is non-minimum phase
— initial power surge opposes control
— highly unsatisfactory response
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Nordic case study

with J. Bjérk (Svenska kraftnét) ® FCR-D service — desired behavior o discussed solution: augment hydro
& K.H. Johansson (KTH) power 3100 - (6.5s + 1) with batteries for faster response
frequency  (2s+ 1)(17s + 1) — works but not very economic
AL Wind
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AL Wind
@ Hydro
@ Thermal

NordLink

aggregated 5-bus Nordic model

® FCR-D service — desired behavior

power 3100 (6.5s + 1)
frequency = (2s+1)(17s + 1)

* well-known issue: actuation of hydro
via governor is non-minimum phase
— initial power surge opposes control
— highly unsatisfactory response
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o discussed solution: augment hydro
with batteries for faster response
— works but not very economic

® better DVPP solution: coordinate

hydro & wind to cover all time scales
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Nordic case study

with J. Bjérk (Svenska kraftnét) ® FCR-D service — desired behavior o discussed solution: augment hydro
& K.H. Johansson (KTH) power 3100 - (6.55 + 1) with batteries for faster response
frequency ~ (2s+ 1)(17s + 1) — works but not very economic
AL Wind
@© Hydro e well-known issue: actuation of hydro  ® better DVPP solution: coordinate
® Thermal via governor is non-minimum phase hydro & wind to cover all time scales

— initial power surge opposes control

. . 50
— highly unsatisfactory response
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Outline

2. DVPP Design as Coordinated Model Matching
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Problem setup & variations

transmission
system
area 2

transmission
system
area 1

transmission
system
R/X <0.1 area 3

one can conceive complex problem setups with
DVPPs spanning transmission/ distribution, multiple
areas, forming/following ...— start simple for now
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Problem setup & variations

transmission
system
area 2

transmission
system
area 1

transmission
system

R/X <0.1 area 3

one can conceive complex problem setups with
DVPPs spanning transmission/ distribution, multiple
areas, forming/following ...— start simple for now

Q

oA

I‘

® DVPP consists of controllable & non-controllable

devices (whose I/O behavior cannot be altered)

® topology: all DVPP devices at common bus bar
(later also spatially distributed setup)

¢ grid-following signal causality: power injection
controlled as function of voltage measurement
(later also grid-forming setup)
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DVPP control setup DVPP: colcton of heterogencus FES _ _ __ _

non-controllable device 1

Agr-1

non-controllable device -1

[A;H.] +A+

controllable device

(&)

controllable device n
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DVPP control setup

. Af }
® global broadcast signal
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® global aggregated power output
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DVPP control setup

global broadcast signal [ A

fl
Allvl|
® global aggregated power output
Apagg _ Ap;
[Aqagg - ZiENUC Aql

¢ fixed local closed-loop behaviors T;(s) of
non-controllable devices ;: €
(e.g., closed-loop hydro/governor model)

® devices i € C with controllable closed-loop
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DVPP control setup

global broadcast signal [ A

fl
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¢ fixed local closed-loop behaviors T;(s) of
non-controllable devices ;: €

(e.g., closed-loop hydro/governor model)

® devices i € C with controllable closed-loop
behaviors T;(s) (e.g., battery sources)

® overall aggregate DVPP behavior
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Coordinated model matching

® overall aggregate DVPP behavior
Apagg(s)] _ : Af(s)
[are)] = Zicwe T [ A1)

® desired DVPP specification: decoupled f-p
& v-q control (later: also consider couplings)

[ = {T‘i%(s) o~ (sj [aleio)

des

=Tqes(s)

DVPP: collection of heterogenous RES
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Coordinated model matching

® overall aggregate DVPP behavior
Apagg(s)} _ T [ Af(s) }
[aeee()] = Siewce 7O [y

® desired DVPP specification: decoupled f-p
& v-q control (later: also consider couplings)

)] = {T‘i%(s) 7o (sj i)

des

=Tqes(s)

!
— aggregation condition: " Ti(s) = Tues(s)
ieENUC

Find local controllers such that the DVPP aggregation

condition & local device-level specifications are satisfied.

DVPP: collection of heterogenous RES

Tr—1(s)

non-controllable device -1

T (s)

control

="

controllable device

Tn(s)

[Ap,] AT

o)

control

controllable device n

desired aggregate behavior
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Outline

3. Decentralized Control Design Method
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Running case studies

Original 9 bus system setup

SG 2 SG 3
(thermal-based) (thermal-based)
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Running case studies

Case study I: hydro

Original 9 bus system setup supplementation

SG 2 SG 3
(thermal-based) (thermal-based)

DVPP 1 for freq. control
Ap = Taes(s) Af

Taes(s) = =21,
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Running case studies

Case study I: hydro Case study II: synchronous

Original 9 bus system setup supplementation generator replacement

SG 2 SG 3
(thermal-based) (thermal-based)

DVPP 1 for freq. control DVPP 3 for freq. & volt. control
Ap = Taes(s) Af Ap] s [ A
D Aq Allol|
Taes(s) = 72771»

—Dp—Hs 0
1
Tdes(s) = oot —Dgq
0 Tqs+1
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Divide & conquer strategy
with V. Haberle (ETH Zurich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

1) Disaggregation & pooling 2) Local matching control
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Divide & conquer strategy aggregation condition: 3" Ti(s) = Tyes(s)

with V. Haberle (ETH Zurich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC) ieNue
1) Disaggregation & pooling 2) Local matching control
t=0 Ties(s)

= > desired behavior
of device i

<
N
4

Disaggregate Tyes(s) into local desired behaviors
for each device (taking local constraints into account).
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DiVide & COﬂquer Strategy aggregation condition: Z Ti(s) L Tdes(s)

with V. Haberle (ETH Zurich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC) ieNue

1) Disaggregation & pooling 2) Local matching control

t=0 Tdes(s)

= > desired behavior
Py of device i

A N
4
Disaggregate Tyes(s) into local desired behaviors

for each device (taking local constraints into account).

t=r Taes(s)

_ = = desired behavior
of device i

N
N

Py

Disaggregation can be adaptive (later).

14/32



Divide & conquer strategy

aggregation condition: Z Ti(s) = Taes(s)
iENUC

with V. Haberle (ETH Zurich), M. W. Fisher (Univ. Waterloo), & E. Prieto (UPC)

1) Disaggregation & pooling

Tdes(s)

= > desired behavior
4~ of device i

A N
4
Disaggregate Tyes(s) into local desired behaviors

for each device (taking local constraints into account).

t=r Taes(s)

_ = = desired behavior
of device i

N
N

4

Disaggregation can be adaptive (later).

2) Local matching control

Ti(s)

plant ¢

matching
control

desired behvavior
of device i

=1

For each device ¢, design a local matching
controller to match the desired behavior.
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Disaggregation & pooling

® disaggregation of DVPP specification via dynamic participation matrices

fp
T;(s) = Mi(s) - Taes(s) Mi(s) = [mio“”) myg(s)]

where diagonals mﬁp, m; % are dynamic participation factors (DPFs) for f-p & v-q channels

Taes(s)
O T Mi(s) - Taes(s)

<
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Ti(s) = Mi(s) - Taes(s) Mi(s) = [mio‘s) myg(s)]

where diagonals mﬁp, m; % are dynamic participation factors (DPFs) for f-p & v-q channels

® resulting DVPP aggregation condition

|
ZieNUC Ti(s) = ZiGNUC Mi(s) - Taes(s) = Taes(s), Tios(5)
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Disaggregation & pooling

® disaggregation of DVPP specification via dynamic participation matrices

miP(s) 0
Tz(s) = M,;(S) 'Tdes(s) Mz(s) = Z0 mZQ(S)
where diagonals mﬁp, m; % are dynamic participation factors (DPFs) for f-p & v-q channels
® resulting DVPP aggregation condition

|
ZiGNUC Ti(s) = Zie/\/uc Mi(s) - Taes(s) = Taes(s), Tios(5)

o T > Mi(s) - Taes(s)

® participation condition: Z SEAUC s) =1

<

or element-wise for the DPFs: D ienue ™ (s) =1 & Do ™ (s) 1
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Dynamic participation factor (DPF) selection (subscripts f-p and v-q channel omitted)

e fixed DPFs m;(s) = (Tyes(s)) ™1 - T3(s) for non-controllable devices — T;(s) unchanged
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Dynamic participation factor (DPF) selection (subscripts f-p and v-q channel omitted)
e fixed DPFs m;(s) = (Tyes(s)) ™1 - T3(s) for non-controllable devices — T;(s) unchanged

® DPFs of controllable devices = transfer functions characterized by
— time constant 7; for the roll-off frequency to account for bandwidth
— DC gain m;(0) = p; to account for peak power limitations

for devices providing regulation for devices providing very fast for devices covering the inter-
on longer time-scale & steady response (e.g., super-caps) mediate regime (e.g., batteries)
-state contributions (e.g., RES)
_ i . _ 3 _ o (15—74)s
m;(s) = Ti‘\:Jrl m;(s) = T:SL m;(s) = m

frequency frequency frequency
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Running case studies - DPF selection for f-p channel

Case study I: hydro supplementation

Case study lI: sync. generator replacement

10'
10' I ) B - h
M) TR T3] —— 1 (5
mi(s) —— 2 mP(s) ,m{);:(g) > m[lp(s)
10"
10”
gf' 10! L — E
107"
102
107 2
107 10° 107 10 102 o o

frequency (rad /sec)

frequency (rad/sec)
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Local matching control

control objective: for each controllable device, design a local matching controllers such that

the local closed-loop behavior matches the local desired specification T; (s) - M;(s) - Tqes(s)
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® setup for matching control design of device i :
either feed tracking error into standard cascaded
converter loops. ..
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Local matching control

control objective: for each controllable device, design a local matching controllers such that

the local closed-loop behavior matches the local desired specification T; (s) - M;(s) - Tqes(s)

* setup for matching control design of device i :
either feed tracking error into standard cascaded
converter loops. . . or better go for principled design

_[aAr
Y= [Auvn

|

Ti(s)

plant i

matching control

controller

K

local desired behavior M; (s) - Tyes (s)

@ = A" + Brw
y* = Ca" + Drw

_ [Api
V= [Aql}

——>
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Local matching control

* setup for matching control design of device i :
either feed tracking error into standard cascaded
converter loops. . . or better go for principled design

_[aAr
Y= [Auvn

|

Ti(s)

plant i

matching control

controller

K

local desired behavior M; (s) - Tyes (s)

@ = A" + Brw
y* = Ca" + Drw

_ [Api
V= [Aql}

——>

control objective: for each controllable device, design a local matching controllers such that

the local closed-loop behavior matches the local desired specification T; (s) - M;(s) - Tqes(s)

* consider augmented state z = [z 2% [c] with
integrated matching error ¢ = y — y* for tracking
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Local matching control

control objective: for each controllable device, design a local matching controllers such that

the local closed-loop behavior matches the local desired specification T; (s) - M;(s) - Tqes(s)

® setup for matching control design of device i : ® consider augmented state z = [a: x* fe} with
either feed tracking error into standard cascaded integrated matching error ¢ = y — " for tracking

converter loops. . . or better go for principled design
* 7., optimal static feedback control K

N, Ti(s) Ap: obtained by minimizing the matching error
v [Auvﬂ plant i Y= [qu
{ o 7 > e e e e
&= Az + Bu+ Buw w__/ —
u y=Cz+ Du+ Dw —T 5= Az+Bu+ Buw >

matching control

!
|
controller |
. |

£+
K |
Pl \

local desired behavior M; (s)-Tues(s)

|

e=Cz+Du+Dw l

|

”’ W ‘
K < |

1

| #F = AT + Brw
| ¥ =Ca' + Drw
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Local matching control

control objective: for each controllable device, design a local matching controllers such that

the local closed-loop behavior matches the local desired specification T; (s) - M;(s) - Tqes(s)

® setup for matching control design of device i : ® consider augmented state z = [a: x* fe} with
either feed tracking error into standard cascaded integrated matching error ¢ = y — " for tracking

converter loops. . . or better go for principled design
* 7., optimal static feedback control K

N, Ti(s) Ap: obtained by minimizing the matching error
Y= [Auvﬂ plant i v [qu
{ ) P — L ____________
@ = Az + Bu+ Bw w / N e
u y=Cz+ Du+ Dw —T 5= Az + Bu+ Bw >

matching control

!
|
controller |
. |

£+
K |
Pl \

local desired behavior M; (s)-Tues(s)

|

e=Cz+Du+Dw l

|

”’ W ‘
K < |

1

| #F = AT + Brw
| ¥ =Ca' + Drw

® include ellipsoidal constraints for transient
device limitations, e.g., hard current constraints
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Case study | - simulation results

—~ 0

S
g

>

&

4]

g -02

g “* load step at bus 6
&

-0.4
5 25 50 75 100 125 150
time (s)

E —A ::m;?«em , '

E L — XA e + AR 4+ ApQVT!
o

14

g

2 20

14

>

= <-.

20 == load step at bus 6

5 25 50 75 100 125 150
time (s)

active power (MW)

DVPP 1
— APy o
DVPP 1

}l])v,li?l’ 1
Apl

load step at bus 6

® poor frequency response
of stand-alone hydro unit
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100 ® significant improvement by DVPP 1

® good matching of desired active
power injections (dashed lines)
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Online adaptation accounting for fluctuating power capacity limits

® adaptive dynamic participation factors (ADPF) with time-varying DC gains: m;(0) = pu;(t)

* online update of DC gains proportionately to time-varying power capacity limits of variable sources
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Online adaptation accounting for fluctuating power capacity limits

® adaptive dynamic participation factors (ADPF) with time-varying DC gains: m;(0) = pu;(t)

* online update of DC gains proportionately to time-varying power capacity limits of variable sources

® requires centralized (broadcast) or distributed peer-to-peer (consensus) communication
device j device i

o]

device i

-
(Lcontrl |

control

device j

® LPV H, control to account for parameter-varying local reference models M;(s) - Tyes(s)
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Online adaptation accounting for fluctuating power capacity limits

Running case study Il - ADPFs of f-p channel before & during cloud

magnitude

S
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102 10° 10?
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3
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mLa(s) —— M (5)
mik(s) —— % mP(s)

10
frequency (rad/sec)
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Case study Il - simulation results

frequency
deviation (Hz)

voltage active power
deviation (MW)

deviation (pu)

reactive power
deviation (Mvar)

load increase at bus 3
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— XAy — X Ag
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i
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adequate replacement of frequency
& voltage control of prior SG 3

good matching of desired active &
reactive power injections (dashed lines)

unchanged overall DVPP behavior
during step decrease in PV capacity
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Outline

4. Grid-Forming & Spatially Distributed DVPP
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Grid-forming DVPP control

with V. Haberle & X. He (ETH Zrich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

transmission
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Grid-forming DVPP control

with V. Haberle & X. He (ETH Zirich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

transmission

grid-following signal causality

[Aree(] = [ 15 Tgs(:(s)] Lalife]

=Tl o)

— power injection controlled as function
of frequency & voltage measurement
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Grid-forming DVPP control

with V. Haberle & X. He (ETH Zirich), E. P. Araujo (UPC), & Ali Tayyebi (Hitachi Energy)

transmission transmission

i) -
-
grid-following signal causality grid-forming signal causality
[APPCC(S)} 1 T(?zs(s) 0 [ Afpec(s) } [ Afpec(s) } L TE:S(S) 0 [APPCC(S)]
Agpee(s) 0 Tie(s)| LAllv]lpec(s) Allv[[pee(s) 0 T (s)| [Agpee(s)
=TRN) =T ()
— power injection controlled as function — frequency & voltage imposition controlled

of frequency & voltage measurement as function of power measurement
24/32



Grid-forming DVPP frequency control architecture

® |ocal controllable closed-loop behaviors Tipf(s)
(extendable to non-controllable behaviors)

Af:[;

Afi

Afn

JAVER 1 —Ap1 local DVPP dynamics
Apa = : | —Ap= : TP (s)
Apan] | —Apn L
! *
} R {0
|
I
I
] A
! ol linearized
! Ape=| power flow
|
A,
l
| L |
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e explicitly model interconnection of DVPP
devices (e.g., via LV network & transformers)
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Grid-forming DVPP frequency control architecture

® |ocal controllable closed-loop behaviors Tipf(s) Apaa] ! —Apy local DVPP dynamics
e |: :| : e |: :|
}

(extendable to non-controllable behaviors) 7 )
Pl

Af:[;

e explicitly model interconnection of DVPP =
devices (e.g., via LV network & transformers)

® linearized power flow with Laplacian Lgypp

I
I
I
I
I
I
Ly I
Ape (S) = ;pp Af(s) ! Apet linearized
! Ape=| power flow
}
I
I
\

\
I
|
|
|
T
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T (s) |
I
I
I
I
I
|
|
I
I
I

Apen ’—‘Ldvpp
L= |

Appec = Y Apa,;
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Kron reduction

PCC
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Grid-forming DVPP frequency control architecture

. £
local controllable closed-loop behaviors TZ.p (s) [AN,} |:—Ap1:| local DVPP dynamics
Apq = —Ap =

(extendable to non-controllable behaviors) 7 )
Pl

Af:|: :

| \
|
] |
| —Apn :
explicitly model interconnection of DVPP - > i
devices (e.g., via LV network & transformers) : e TR(s) I
| |
linearized power flow with Laplacian Lqypy, : !
L | |
Ape(s) = %Af(s) ! Ape.t linearized :
: Ape=| power flow |
. ! Lavpp
assume coherent response for DVPP design: s s | - }
-1
Afi(s) = (TP (s)7Y) " Y, Apasi(s)
desired synchronized PCC dynamics
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Grid-forming DVPP frequency control architecture

® |ocal controllable closed-loop behaviors Tipf(s)
(extendable to non-controllable behaviors)

e explicitly model interconnection of DVPP
devices (e.g., via LV network & transformers)

® linearized power flow with Laplacian Lgypp

Ape(s) = 2422 A f(5)

® assume coherent response for DVPP design:

Afi(s) = (D17 (9)7) 1 Y, Apa,ils)

desired synchronized PCC dynamics
Afpcc = Tgss(s) Appcc

— aggregation condition:
!

(2, 7P (s)7) 7' = TR (s)

\
Apa,1 1 —Apy local DVPP dynamics | Afy
Apg = : —Ap= 8 I Af=| :
Pd . | p : Tlpf ) ‘ f :
Pd,n | | —Apn ‘ Afn
L
= ) @ ]
} T 1) w
| :
I
I
1
I 2 :
! el linearized |
! Ape=| power flow |
|
Ap [ﬁ
‘ . Lavpp :
| s
== ]
~
App f7777777777777; 777777777777 ) Afpee
T > T5(9) ;
\
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Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes
— no analogy to DVPP frequency control setup

26/32



Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes

— no analogy to DVPP frequency control setup local DVPP dynamics
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® aggregate reactive power injection
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Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes

— no analogy to DVPP frequency control setup local DVPP dynamics

® common global input signal A||v||pcc

® aggregate reactive power injection
A‘Iagg = Z:L:I Ag;

|
|
|
|
|
Albllpec | » +
|
|
|
|

® local controllable closed-loop behaviors T3 (s)
(extendable to non-controllable behaviors)
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Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes
— no analogy to DVPP frequency control setup

® common global input signal A||v||pcc

® aggregate reactive power injection

n
Aagg =), Aai
® local controllable closed-loop behaviors T3 (s)
(extendable to non-controllable behaviors)
Alfollpee

Allvllpee

local DVPP dynamics

® aggregate DVPP behavior
Adagg(s) = = D0 T (s)Al[v]|pec(s)

: Ty(s) !
| —Aq :
! I
| " o AL
! : | —Adagg
| va (o -
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Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes
— no analogy to DVPP frequency control setup

® common global input signal A||v||pcc

® aggregate reactive power injection

n
Aagg =), Aai
® local controllable closed-loop behaviors T3 (s)
(extendable to non-controllable behaviors)
Alfollpee

Allvllpee

local DVPP dynamics

———————————————————

® aggregate DVPP behavior
Adagg(s) = = D0 T (s)Al[v]|pec(s)

® approximate Agpcc & —Agagg (I0ss compensation)

— aggregation condition:

2 T = Tag ()7
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Grid-forming DVPP voltage control architecture

® no coherent behavior of local voltage magnitudes

— no analogy to DVPP frequency control setup local DVPP dynamics

® common global input signal A||v||pcc } Ty%(s) [
® aggregate reactive power injection Al } ol
llpee 2 * | —Agagg
Adagg = Z?:l Ag; i T (s) =Rz |
|
,Aq" |
ore 7 | |
¢ local controllable closed-loop behaviors T (s) ... == @ ___ !
(extendable to non-controllable behaviors) =
. Bllellpee 7~~~ | Adpee
® aggregate DVPP behavior 1 > Th(s)™! T >
n vq N %Jm ,,,,,, )
Adagg(s) = =D i T (5)Al|vl|pee(s)
® approximate Agpce & —Agagg (0SS compensation) Afpec(s) | L [T2E (5) 0 Appee(s)
Alfvllpec(s) 0 TP (s)] |Adpec(s)

— aggregation condition:

2 T = Tag ()7

_pform
7Tdcs (s)
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Adaptive divide & conquer strategy for grid-forming DVPP

* disaggregation of Tj‘;;m via ADPFs
foo\— n f froy—1 "t n f7o\—
Tc?es(s) ! = Zi:l mip(S)TCIl)es(s) = Zi:l Tip (S) 1’
v — n Y \' — ' Vi
Tges(s) ! = Zi:l miq(S)chlles(S) ! A Z?:l Tz q(S)’

® participation condition

Y mP () EL & WL mii(s) = 1

* online adaptation of LPF DC gainsun?(0).= p*(t), k€ {fp,vq}

local model matching condition
£ ' - £
TP (s) = m;P(s) "' TR (s),

TYY(s) = m¥(s) T (s) .

® compute local LPV #{ ., matching controllers
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Numerical case study

frequency
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® specify decoupled p-f & g-v control

1
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® good matching of desired behavior (dashed lines)

® unchanged aggregate DVPP behavior during
decrease in wind generation
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Numerical case study

load increase at bus 2

decrease in wind generation
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Spatially distributed DVPP

with V. Haberle & X. He (ETH), Ali Tayyebi (Hitachi Energy), & E. Prieto (UPC)
Distribution system DVPP

Transmission system DVPP
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R/X <0.1 area 3
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system

distribution
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R/X >1
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Spatially distributed DVPP

with V. Haberle & X. He (ETH), Ali Tayyebi (Hitachi Energy), & E. Prieto (UPC)

Transmission system DVPP

transmission
system
area 2

transmission
system
area 1

transmission
system

R/X <0.1 area 3

transmission
system
area 2

transmission
system
area 1

777777 transmission
system

R/X < 0.1 area 3

Distribution system DVPP

transmission
system

distribution

system R/X >1

transmission
system

distribution
system

Assumptions
® only constant power loads within DVPP area

® all devices in the DVPP area with dynamic ancil-
lary services provision are part of the DVPP
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Key ingredient: rotational power control
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Key ingredient: rotational power control

transmission system DVPP

transmission
system
area 2

transmission
system
area 1

transmission
system
area 3

R/X <01

distribution system DVPP

transmission
system ) TN
distribution

system

— rotational powers to decouple power flow equations

7=z w7

® |ossless p (or p’) transmission — p-f (or modified p’-f) control setup for DVPP at one bus still valid

® limitation 1: (p,q) device constraints need to be mapped (possibly conservatively) to (p’,q’) constraints
® limitation 2: lossy q (or q') transmission — DVPP control requires omniscient & centralized coordination

solution: consider global p-f (or p’-f) DVPP control at the POCs & use independent local g-v (or g’-v) controllers
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Outline

5. Conclusions

31/32



Conclusions

® coordinate heterogeneous RES to provide dynamic ancillary services

® heterogeneity: different device characteristics complement each other
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® reduce the need of conventional generation for dynamic ancillary services ]

En
-/!\

ek

32/32



Conclusions

coordinate heterogeneous RES to provide dynamic ancillary services

heterogeneity: different device characteristics complement each other

—r—
reduce the need of conventional generation for dynamic ancillary services [ |

disaggregation of desired aggregate input/output specification via DPFs 0
local LPV H ., model matching taking device constraints into account

online-update of DPFs & matching control to adapt to variable generation

32/32



Conclusions

coordinate heterogeneous RES to provide dynamic ancillary services

heterogeneity: different device characteristics complement each other

—r—
reduce the need of conventional generation for dynamic ancillary services [ |

El
S
-/‘\

disaggregation of desired aggregate input/output specification via DPFs 0
local LPV H ., model matching taking device constraints into account

online-update of DPFs & matching control to adapt to variable generation

grid-forming, hybrid, & spatially distributed DVPP setups
globally optimal model-matching via modified system level synthesis (@m

complex frequency & power notions to specify future ancillary services
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