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0 Electric Power Distribution
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* Centralized industry-grade control systems (e.g. system operator or
utility, substations, power plants)

* |ndustry-grade cyberdefense

* Lots of direct and already weaponized attack v
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_ What Is Grid Edge?

Grid edge does not have a clear Grid
definition and the line is blurry i’n‘i: sdge
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B Weaponizing Grid Edge Attack Vectors

Grid edge is exposed to rndirect attack vectors:
* Low security awareness/hygiene among electricity consumers

) Data collection Data-inspired actions
* No industry-grade cyber defense = =
* Many novel attack angles
e Stealthy to the utility ' s
$ Power grid
g ((( ))) operator
Many unknown effects: Atacker
* New objectives (e.g. adversarial learning) g
* “Human-in-the-loop” factors () e

* Ability to scale and self-reproduce Customer

choices and
preferences




B Grid-Edge Cyber Risks: Different Perspectives

BlackloT: loT Botnet of High Wattage Devices
Can Disrupt the Power Grid

Saleh Soltan, Prateek Mittal, and H. Vincent Poor, Princeton University

https://www.usenix.org/conference/usenixsecurity18/presentation/soltan

Not Everything is Dark and Gloomy: Power Grid
Protections Against loT Demand Attacks

Bing Huang, The University of Texas at Austin; Alvaro A. Cardenas,
University of California, Santa Cruz; Ross Baldick, The University of Texas at Austin

https://www.usenix.org/conference/usenixsecurity19/presentation/huang

An Important outcome of Huang et al:
* Grid-edge attacks are likely to be contained in distribution/sub-transmission networks
* Grid impacts are highly sensitive to an exploited attack vector
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_ All Attack Vectors Are Equal, But Some ...

Attack Sophistication
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B An Quick Look Into Economics Of Grid-Edge Cyber Resiliency

Grid-edge actors have a complex loss surface:
* Not exposed to the cost of power outages
* Not exposed to regulatory and compliance risks

* Exposed to profit opportunity losses
* Exposed to damage costs

Charging & Profit losses:

e 1EV@ 250 kW in 20 min

* $20 per full charge

* Profit loss per stall - $60/hr

* 4 stalls =1 MWh of charging
loss = $240/hr

Cost of power outages:
* VOLLIs $11-60,000/MWh

Social vs private risk
exposures are
grotesquely misaligned
- (45-250 times!)
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. Looks Familiar?

Think of the Feb 2021 disaster in TX (a poster child for private vs social risk
iImbalances)

* A lack of investment in weather resiliency

* Surplus of online producers has, in fact, increased due to scarcity

* Non-opportunity losses of offline producers has been $22m (est)

Similarity to grid-edge cyber resiliency via a missing incentive problem

Tuesday, 12:15 p.m. Wednesday, 11:30 a.m. Thursday, 10:30 a.m.
4.4 million customers (35.1%) 3.4 million customers (27%) 490,000 customers (3.9%)

OKLA.

ARK:

Percentage of customers without power
0% 50% 100%
B |
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0 The Rest of This Presentation

How to solve a missing incentive problem to promote grid-edge cybersecurity?

We will follow the lessons learned thus far:
* Huang et al: Focus on EV-specific attack vectors and distribution network impacts
* Compliance: lightweight solutions which requires minimal regulatory approvals

Solution (sketch):

* |ntroduce a cyber insurance mechanism that shares social/system risks with private
actors (EV charging stations)

* Relate it to a business model of the EV charging station operators

* Leverage cyber insurances to promote better cyber security compliance




_ Origins of EV Chargmg as a Grid-Edge Cyber Threat
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_ Origins of EV Charging as a Grid-Edge Cyber Threat
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_ Even A Conservative Attack on EV Charging Will

Make Front Pages

i " X
=) =2 )U >
+
AP"
A
Attacker
g

Using the data, we take the perspective of
the attacker and design a remote, state-
feedback-based, data-driven attack
strategy

Well-known power grid
models & estimated
parameters

300-1000 x_=p
are needed to cause
a brown/blackout
on Manhattan, NY

12




= How to Design an Insurance Mechanism?

: ‘ . .................................................. Insurer
min x y : EV charging price (A°),
st. x Z flSP(A), YRy T Ahz* f2(d7 A" Z EVCS demand forecast (d)
Policy factors EVCS revenue Co-insuarnce factor (’y) :
A € argmin g1(A° — / -------- -
arg min g1(A°) ‘Premium (x) ! EVCS
st. CA\ N 2%,d,~v,P(A)) <0 Fommmmmmmemees - operator

Net EVCS operating cost

LN -
........................................................................................................................................................................

This bi-level optimization can be solved
(0) .

Profit loading factor ana Iytlca | Iy [

Penalty for attack history K x= [(IP’(A) (’Y_ 1) +1) _C][P(A)P;Dﬁ’(l _P(A) )ZDtA?’*] 3
Co-insurance factor Y

Probability of attack on the P(A)
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_ A More Challenging Case with Dynamic Electricity Tariffs

| . .................................................. Insurer
min @ . : EV charging price (\°),
st. x> flEP(A),’y, Kk, T, Ahl* fQ(d, A Z EVCS demand forecast (d),

Policy?actors EVCSYevenue : '

: Co-insuarnce factor (7y)

-
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

.....................................................................................................
--------------------------

A° € argmin g1(\°)

EVCS
st. C(A% A% 27, d,v, P(A)) <0 operator
EVC‘Srcost
Grid operating cost EVCS demand forecasts (d) Operator

s.t. Power flow equations with d

[N ] n
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[

This tri-level optimization is solved numerically, but

oEtimalli usinﬁ column-and-cut generation algorithm. .
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_ Data is Crucial to Internalize Risks Into Insurance Design

* The insurance design depends upon EV

charging demand forecasts. 5.?E..Y..(.J..S..ffff?a\?ﬁ..f.?ff.cft...(f?.é
A€ € argmin g1(\) EVCS
E s.t. \C(()\C’)\U’x*’d,”}/,P(A)ZS O Operator

* The EVCS power demand forecasts can
have errors

) ] . . EVCgcost
° There IS a ”Sk N ChOOS|ng a forecast to L S PTTY L LT PP / ...................... H

calculate the premium and EVCS cost.

° Condltlonal value_at_RISk (CVaR) metI’IC ...................................................
IS used to quantify this risk.
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= Data is Crucial to Internalize Risks Into Insurance Design

Hrp
We robustify insurance design against uncertaint Hai /\
y gn ag y qﬂ\. .

iIn real-world data .
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_ Insurance Premium is Very Sensitive to Parameters
* EVCS demand uncertainty

6 T T
§ — — Expected T
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a swift change
0% " . . N . .
T e setecton T containment. " T o remediation Co-insurance factor Y Linear
Note to my future self: this data varies . .
, Penalty for attack history K Log-linear
locationally a lot! Whatever works for NYC, may _ |
not work for Israel, Estonia and Ukraine. NLITloer O ZiffEehe In e pas: An og e
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_ Robust Insurance Design

‘SLower Bound [ JUpper Bound —e—Expected‘

* Upper bounds are set by the upper limit of 34 ¢ ‘ ‘ .
the uncertain parameters. = 32
§3O$\Q\s\\\<
* Lower bounds are set by the lower limit of the < o8|  >
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Fig: Risk-Averse and robust EV charging prices and cyber insurance premiums.
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_ Grid-Edge Cyber Resiliency and Autonomy

* Grid edge enables autonomy via a high degree of

decentralized decision-making
* Compromised grid-edge assets Is a system risk due to
untrustworthy autonomy
* Grid-edge cyber risks are easily, in theory, solved If
framed as a missing incentive problem (not necessarily as

an insurance design problem), but
* Avallability of high-fidelity data i1s a major setback
* Privacy restrictions fueled by decentralization and autonomy
exacerbate data challenges for insurance design
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- Concluding Thoughts for Grid-Edge Cyber Resiliency

* “Ask what you can do for your country”
* Develop incentives to maintain & promote
cybersecurity at the edge
* More instruments for risk-sharing between the
grid and customers
* Smart and flexible regulatory environment and
product certification
* Very difficult to find one solution for 50

states
* Customer education and engagement via
outreach
. . / ()  realdata o
* Emerging risks: Vg ) union
* GAN-based make data-driven, model-free Uleloparnt: 1
: : Network
attack representations possible (a.k.a. — D(z) 0
Deepfakes) o Network B

G(z2)

generated

* Data requirements for attack execution will F-— -

reduce in the future
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