Electric Demand Management Without Price Elasticity Models

Emiliano Dall'Anese

University of Colorado Boulder

Sixth Workshop on Autonomous Energy Systems

National Renewable Energy Laboratory

September 6, 2023

Acknowledgements

Killian Wood

Ana Ospina (now at Guidehouse)

Kind support of:

Benefits of demand flexibility

Resilience

Sustainability and energy savings

Energy equity

Infrastructure cost

Estimates in reports from RMI, NREL, U.S. EIA, and many others ...

Flexibility via incentive-based control

Idea: Incentivize DER owners to adjust the power consumption or generation to provide services to the grid (at a given time-scale)

[Mohsenian-Rad et al'10], [Yang et al'15] [Li et al'16], [Zhou et al'17], [De Paola et al'17], [Gong et al'19] and many others ..

E. Dall'Anese September 2023 4/

Flexibility via incentive-based control

Idea: Incentivize EV drivers change during specific times to provide services to the grid

[Sojoudi-Low'11], [Gan et al'12], [Gharesifard et al '13], [Yoon et al'15], [Paccagnan et al '18], [Perotti et al'23], and many others ..

E. Dall'Anese September 2023 5/2

Example of desirable outcome

Figure from [Perotti et al'23]

Price-based or incentive-based control

A stylized formulation:

$$\min_{x} f(x) := \left(\sum_{i=1}^{N} \mathcal{E}_{i}(x_{i}) - p^{*}\right)^{2}$$

where $p_i = \mathcal{E}_i(x_i)$ modeling the elasticity to prices or the response of DER owners

Note: need to know (perfectly) the functions $\mathcal{E}_i(x_i)$ for all i = 1, ..., N

Price-based or incentive-based control

A stylized formulation:

$$\min_{x} f(x) := \left(\sum_{i=1}^{N} \mathcal{E}_{i}(x_{i}) - p^{*}\right)^{2} + \sum_{i=1}^{N} \mathcal{E}_{i}(x_{i})x_{i}$$

where $p_i = \mathcal{E}_i(x_i)$ modeling the elasticity to prices or the response of DER owners

Note: need to know (perfectly) the functions $\mathcal{E}_i(x_i)$ for all $i=1,\ldots,N$

Price-based or incentive-based control

A stylized bi-level formulation:

$$\min_{x,p} f(x,p) := \sum_{i=1}^{N} (p_i - p_i^*)^2 + \sum_{i=1}^{N} p_i x_i$$
s.t. $p_i \in \underset{r \in \mathcal{P}}{\operatorname{argmin}} C_i(r) - x_i r i = 1, \dots, N$

where

$$\underset{r\in\mathcal{P}}{\operatorname{argmin}} C_i(r) - x_i r$$

is the best response to prices of DER owner or aggregator i

What is this? Re: Classical Stackelberg game between a leader (utility company) and followers (DER owners)

Note: need to know (perfectly) the functions $C_i(r) - x_i r$ for all i = 1, ..., N

E. Dall'Anese September 2023 S

Elasticity and response are uncertain

From the U.S. Energy Information Administration: "price elasticity of demand, or the percentage change in energy consumption relative to the percentage change in prices, all other factors being equal."

What about "other factors"?

- Anxiety for low state of charge
- Different driving patterns
- Traffic congestion
- Tourists driving through the area
- ...

Bottom line: we cannot easily model $\mathcal{E}_i(x_i)$ or $C_i(x_i)$

Elasticity and response are uncertain

From the U.S. Energy Information Administration: "price elasticity of demand, or the percentage change in energy consumption relative to the percentage change in prices, all other factors being equal."

What about "other factors"?

- Different control systems
- Different preferences
- Different weather
- Traveling
- ...

Bottom line: we cannot easily model $\mathcal{E}_i(x_i)$ or $C_i(x_i)$

A simple approach based on a simple observation

The likelihood of changing power consumption depends on the price *and* other factors that are difficult to model

Modeling uncertain elasticity with decision-dependent problems:

$$x^* \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \left\{ F(x) := \underset{p \sim D(x)}{\mathbb{E}} f(x, p) \right\}$$

where $D: \mathbb{R}^d \to \mathcal{P}(\mathbb{R}^k)$ is a distributional map

Main goal

Decision-dependent problem (t time index):

$$x_t^* \in \operatorname*{argmin}_{x \in \mathcal{X}_t} \left\{ \left(f_t(x) := \underset{p \sim D_t(x)}{\mathbb{E}} f_t(x, p) \right) \right\} \left(\int_{\mathbb{R}^n} f_t(x, p) \left(\int_{\mathbb{R}^n} f_t(x, p) f_t(x, p) \right) dx \right\}$$

Objective (informal): Design an algorithm to dispatch prices x_t based on i) the cost $f_t(x, p)$ and ii) demand measurements p_t , that are "as close as possible" to the "optimal prices" $\{x_t^*\}$

Key operating assumptions: the algorithm has no access to elasticity models or the map $D_t(x)$

Challenges

Challenge #1: Cost may be non-convex in many settings

Challenge #2: We cannot compute the gradient

Why? Gradient requires distribution information:

$$\nabla F(x) = \underset{p \sim D(x)}{\mathbb{E}} \left[\nabla_x f(x, p) + f(x, p) \nabla_x \log \rho(p|x) \right]$$

An answer to #1: notion of equilibrium point

Definition. A point $\bar{x} \in \mathcal{X}_i$ is an equilibrium point if:

$$\bar{x} \in \operatorname*{argmin}_{x \in \mathcal{X}_t} \underset{p \sim D_t(\bar{x})}{\mathbb{E}} f_t(x, p).$$

An equilibrium point is is optimal for the distribution that it induces on p.

Equilibrium Points

Two key results from [Perdomo et al'20]

Existence of equilibria). Suppose that

- (i) $x \mapsto f(x, p)$ is continuous and convex,
- (ii) $D: \mathbb{R}^d \to (\mathcal{P}(\mathbb{R}^k), W_1)$ is continuous,
- (iii) \mathcal{X} is convex and compact.

Then there exists $\bar{x} \in \mathcal{X}$ such that

$$\bar{x} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \underset{p \sim D(\bar{x})}{\mathbb{E}} f(x, p).$$

Theorem (Unique Equilibrium Point). If $x \mapsto f(x,p)$ is γ -strongly convex, $\nabla_x f$ is L-Lipschitz, D is ε -Lipschitz, and $\frac{\varepsilon L}{\gamma} < 1$, then \bar{x} is unique.

 ε -Lipschitz distributional map: $W_1(D(x), D(y)) \le \varepsilon ||x - y||$ for all $x, y \in \mathbb{R}^d$.

Example: if $D(x) = \mathcal{N}(Mx, \Sigma)$, then $\varepsilon = ||M||_2$.

Time-varying Optimal Pricing Problem Revisited

Time-varying optimal pricing problem (*t* time index):

$$x_t^* \in \operatorname*{argmin}_{x \in \mathcal{X}_t} \left\{ f_t(x) := \mathop{\mathbb{E}}_{p \sim D_t(x)} [f_t(x, p)] \right\} \left($$

Assumptions: $x\mapsto f_t(x,p)$ is γ -strongly convex, $\nabla_x f_t$ is L-Lipschitz, D_t is ε -Lipschitz, and $\frac{\varepsilon L}{\gamma}<1$ for all t.

Goal: track the trajectory of equilibia $\{\bar{x}_t\}_{t\in\mathbb{N}}$; i.e. bound $\limsup_{t\to\infty}\|x_t-\bar{x}_t\|$

Connecting to the previous examples:

$$\sum_{i=1}^{N} \mathcal{E}_{i}(\mathbf{x}_{i}) - p^{*} \bigg)^{2} \quad \text{is replaced by:} \quad \underset{p \sim D_{t}(\mathbf{x})}{\mathbb{E}} \left[\left(\sum_{i=1}^{N} \not p_{i} - p^{*} \right)^{2} \right] \bigg($$

Online Equilibrium Gradient Descent

A "conceptual" online equilibrium seeking:

$$x_{t+1} = \operatorname{proj}_{\mathcal{X}_t} \left(x_t - \eta_t \, \mathbb{E}_{p \sim D_t(x_t)} \, \nabla_x f_t(x_t, p) \right) \left($$

Theorem (Error Bound) [Wood-Bianchin-Dall'Anese '22] Assume that:

(i) $x\mapsto f_t(x,p)$ is γ -strongly convex and $\nabla_x f_t$ is L-Lipschitz, (ii) D_t is ε -Lipchitz, (iii) $\frac{\varepsilon L}{\gamma}<1$. Then,

$$\|x_t - \bar{x}_t\| \le (\rho + \eta \varepsilon L)^t \|x_0 - \bar{x}_0\| + \Delta (1 - (\rho + \eta \varepsilon L))^{-1}, \quad \forall t \in \mathbb{N}$$

where $\rho = \max\{|1 - \eta \gamma|, |1 - \eta L|\}$ and $\Delta := \sup_{i \in \mathbb{N}}\{\|\bar{x}_{i+1} - \bar{x}_i\|\}.$

Corollary (Linear Tracking). If
$$\eta \in \left(0, \frac{2}{(1+\varepsilon)L}\right)$$
, then
$$\limsup_{t \to \infty} \|x_t - \bar{x}_t\| \leq \Delta (1 - \rho - \eta \varepsilon L)^{-1}.$$

Closed-loop Equilibium Seeking

Idea: replace $\mathbb{E}_{p \sim D_t(x_t)} \nabla_x f_t(x_t, p)$ with a single-sample gradient estimate

$$G_t(x) = \nabla_x f_t(x_t, p_t), \quad p_t \sim D_t(x_t)$$

$$x_{t+1} = \operatorname{proj}_{\mathcal{X}_t} (x_t - \eta_t G_t(x_t))$$

This leads to a feedback system: deploy prices and then measure power

E. Dall'Anese September 2023

18/27

Analysis

Perturbation of the conceptual equilibirum seeking method with error:

$$e_t := \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p}_t) - \mathbb{E}_{p \sim D_t(\mathsf{x}_t)} \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p})$$

Theorem (Mean Error Bound). Suppose that

- (i) f_t is γ_t -strongly convex and L_t -smooth,
- (ii) D_t is ε_t -Lipschitz continuous.

Then, if $\frac{\varepsilon_t L_t}{\gamma_t} < 1$,

$$\mathbb{E}[\|x_t - \bar{x}_t\|] \le a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t \oint_i (\Delta_i + \eta_i \mathbb{E}[\|e_t\|])$$

with $a_t := \prod_{i=1}^t (\rho_i + \eta_i \varepsilon L_i)$ and

$$b_i = \begin{cases} \int_{k=i+1}^{1} (\rho_k + \eta_k \varepsilon_k L_k) & i < t \end{cases}$$

Analysis

Perturbation of the conceptual equilibirum seeking method with error:

$$e_t := \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p}_t) - \mathbb{E}_{\mathsf{p} \sim D_t(\mathsf{x}_t)} \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p})$$

Model: Each entry of e_t is a Sub-Weibull random variable

Definition (Sub-Weibull rv). A random variable $X \in \mathbb{R}$ is sub-Weibull if $\exists \theta > 0$ such that (s.t.) one of the following conditions is satisfied:

- (i) $\exists \nu_1 > 0$ s.t. $\mathbb{P}[|X| > \epsilon] < 2e^{-(\epsilon/\nu_1)^{1/\theta}}, \forall \epsilon > 0$.
- (ii) $\exists \nu_2 > 0$ s.t. $\|X\|_k \leq \nu_2 k^{\theta}$, $\forall k \geq 1$

where $||X||_k := (\mathbb{E}[|X|^k])^{1/k}$.

Short-hand notation: $X \sim \text{subW}(\theta, \nu)$ means sub-Weibull rv according to (ii).

E. Dall'Anese September 2023 20 / 27

Analysis

Perturbation of the conceptual equilibirum seeking method with error:

$$e_t := \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p}_t) - \mathbb{E}_{\mathsf{p} \sim D_t(\mathsf{x}_t)} \nabla_{\mathsf{x}} f_t(\mathsf{x}_t, \mathsf{p})$$

Model: Each entry of e_t is a Sub-Weibull random variable

What is it?

Image from [Vladimirova et al'20]

A Step-Wise Error Bound

Theorem (Stochastic Error Bound) Under the same assumptions of the previosu theorem, let $\|e_t\| \sim \mathrm{subW}(\theta_t, \nu_t)$ Then, if $\frac{\varepsilon_t L_t}{\gamma_t} < 1$, for any $\delta \in (0,1)$, the following bound holds with probability $\geq 1 - \delta$.

$$\|x_t - \bar{x}_t\| \le c(\theta) \log^{\theta} \left(\frac{2}{b}\right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right) \left(a_t \|x_0 - \bar{x}_0\| + \sum_{i=1}^t b_i \left(\Delta_i + \eta_i \nu_i\right) \right$$

Corollary. Let $\lambda \in (0,1)$ and

$$\eta_t \in \left[\frac{1-\lambda}{v_t + \varepsilon_t L_t}, \frac{1+\lambda}{L_t(1+\varepsilon_t)}\right] \left($$

Then $\sup_{t>0} \{\rho_t + \varepsilon_t L_t \eta_t\} \le \lambda < 1$, and

$$\Pr\left(\left\| \max_{t \to \infty} \|x_t - \bar{x}_t\| \leq \frac{\Delta + \eta \nu}{1 - \lambda} \right) \middle\models 1.$$

Example: EV Market Problem

Example of cost function:

$$f_t(x) = \sum_{i=1}^{N} \frac{\gamma_{t,i}}{2} x_i^2 - p_i x_i + u_{t,i} x_i$$

• Profit: $p_i x_i$

• Utility cost: $u_{t,i}x_i$

• Quality-of-service or equity: $\frac{\gamma_{t,i}}{2}x_i^2$

Example of distributional map:

$$p \stackrel{d}{=} p_{t,0} + E_t x$$

• Price elasticity of demand: E_t

• Stationary demand: $p_{t,0}$

Data

Demand Data

- 18 total stations
- Vary in port power, number of ports, and demand rate
- Data from NREL [Gilleran et al'21]

Results

Extensions

• Saddle-point problem [Wood-Dall'Anese '23]

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \left\{ F(x, y) := \underset{p \sim D(x, y)}{\mathbb{E}} [f(x, y, p)] \right\} \left($$

 $x \in \mathbb{R}^d$, $y \in \mathbb{R}^n$, $w \in \mathbb{R}^k$.

Motivation: Competitive energy markets between two EV charging providers.

• Multi-player monotone games [soon]

$$\min_{x_i \in \mathcal{X}_i} \left\{ F(x_i, x_{-i}) := \underset{p \sim D(x_i, x_{-i})}{\mathbb{E}} [f(x_i, x_{-i}, p)] \right\} \left(i = 1, \dots, P \right)$$

Motivation: Multi-operator or multi-utility competitive energy markets

E. Dall'Anese September 2023

26 / 27

Conclusions

- Elasticity difficult to model in modern energy systems
- Decision-dependent formulations to model uncertain elasticity
- Feedback-based gradient method to design prices
- Performance assessment relative to equilibria

Thank you!

emiliano.dallanese@colorado.edu

E. Dall'Anese September 2023 27 / 27