

Grid-Converter Test Rig

An Industrial Approach to Validation of Wind Energy Converter Systems

SGRE TE EL Grid Connection October 2024 7th International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Drivetrains

AGENDA

INTRODUCTION G-CTR

SYSTEM SETUP

POWER HARDWARE & CONTROL

DYNAMIC TEST CAPABILITY

PROJECT PLAN

DETERMINATION OF HARMONIC CHARACTERISTICS

OUTLOOK

GRID-CONVERTER TEST RIG (G-CTR)

- Commissioned 2023
- Located at SGRE facility in Brande
- Prototype early-stage model validation
- RMS & EMT model validation
- Frequency Domain Model Validation
- Converter Harmonic Modeling

GRID-CONVERTER TEST RIG

System Setup

SIEMENS Gamesa RENEWABLE ENERGY

UVRT SYSTEM PERFORMANCE

Measurement Result - 20% retained voltage at 100% power

SIEMENS Gamesa

MEASUREMENT SYSTEM

High Precision and High Sampled

- 80 high precision & high sampled measurements
- Measurements on low-voltage as well as medium-voltage side
- Extensive DUT measurements on net-bridge converter
- LEM ITZ ULTRASTAB high precision current measuring device
 - DC and AC current with a bandwidth > 10kHz
- Dewesoft SIRIUS XHS: high-speed data acquisition system
 - Up to 15 MS/s sampling rate with 5 MHz bandwidth
 - Direct voltage measurement up to 2000V peak
 - Medium voltage measurement using differential probes
 - Field bus interfaces to acquire setpoints & feedback signals

TEST RIG VALIDATION

Comparison Field vs. G-CTR Measurements

Curran et al., WTG Grid Compliance Testing and Validation Part 1: Grid-Converter Test Rig Measurement and Verification based on the IEC 61400-21-4. Wind Integration Workshop 2024, Helsinki, Finland.

	No-load Tests	Component Validation	Type Test Validation	Measurement Reports
AIM	Demonstrate fulfilment of technical specification on 50/60 Hz.	Prove fidelity of models used and reduce uncertainty.	Assess G-CTR performance acc. to IEC 61400-21-4.	Measurement report for each test type.
		Validation of emulated components.	Transferability analysis with DEWI-OCC.	
Iask	Test G-CTR technical specs acc. to IEC61400-21-4.	Field and G-CTR tests which focus on emulated components representation.	Type tests performed in field and repeated on G-CTR.	Analysis of measurement results with UL International.

Contribution to Power Quality Analysis Harmonic Characteristics

✓ Converter Harmonic Model

✓ Frequency Domain Model Validation

✓ Dual-Scheme Impedance Scan

Power Quality Analysis

HARMONIC CHARACTERISTICS

- Up to now there is a lack of experience regarding harmonic analysis on test rigs
- Power quality analysis from different sites not comparable
- Method required to increase immunity to grid background harmonic
- Test rigs provide an advantage in combination with mathematical tools
- Best practice required to explore the effect of converter operating conditions on harmonic characteristics
- Converter Harmonic Model (CHM): Field independent analysis & representation

CONVERTER HARMONIC MODEL (CHM)

Brogan et al.,

- Thevenin equivalent representation of the converter
- Utilized for harmonic compliance studies
- Measurement& calculation in accordance with IEC
 61400-21-1 and -3
- Converter current measurement (non-filtered)
- Voltage measurement at the point of common coupling
- Equivalent converter impedance characteristics from validated frequency scan results (FDM)
- Statistical analysis to export CHM

Converter Harmonic Model (CHM)

MEASUREMENT & OPTIMIZATION

- Detailed Test & Analysis on Test Rig
 - Individual measurements at each 10% power bin
 - Reactive import and export conditions as well as various modulation depth conditions
 - Various grid strength conditions as well as 50/60 Hz operation
 - Various grid emulator switching frequency and modulation schemes
 - Analysis of lower-order baseband harmonics as well as high-order sideband harmonics
- Best practice to increase comparability
- Variable fundamental frequency influences results specially in the sideband and for interharmonic characteristics
- Periodic or constant deviation of ±0.025Hz

SIEMENS

Inter Harmonics (CHM Voltage) – Side-band Group 1

Converter Harmonic Model (CHM)

MEASUREMENT & OPTIMIZATION

- Best practice to increase comparability
- Modifications on the modulation depth by modifying voltage operating point
- Variations in both baseband and sideband harmonics observed
- E.g. an increase in the modulation depth increases harmonics in the side band range (more dominant)
- Controllability of grid voltage on test rig provides an additional possibility to maintain voltage and reactive operating point in a wider range

Frequency Domain Model (FDM) Validation **CONVERTER IMPEDANCE SCAN**

Calculate converter *dq*-frame *input* impedance:

$$\begin{bmatrix} V_q \\ V_d \end{bmatrix} = \begin{bmatrix} Z_{qq}(j\omega) & Z_{qd}(j\omega) \\ Z_{dq}(j\omega) & Z_{dd}(j\omega) \end{bmatrix} \begin{bmatrix} I_q \\ I_d \end{bmatrix}$$

Perturbation:

- Frequency perturbation added to the grid simulator voltage thereby invoking a response from the WT converter.
- Each perturbation is performed at frequency f_p and • $f_p - 2f_1$

Measurements:

- Converter main reactor three-phase current $i_{abc}(t)$. ٠
- LV three-phase voltage measurement $v_{abc}(t)$

Wind turbine power hardware

Frequency Domain Model (FDM) Validation DUAL-INJECTION METHODOLOGY

Calculated converter *dq*-frame *input* impedance:

 $\begin{bmatrix} V_q \\ V_d \end{bmatrix} = \begin{bmatrix} Z_{qq}(j\omega) & Z_{qd}(j\omega) \\ Z_{dq}(j\omega) & Z_{dd}(j\omega) \end{bmatrix} \begin{bmatrix} I_q \\ I_d \end{bmatrix}$

- Dual-scheme scan to capture frequency-couplings
- Impedance model obtained as a transfer function matrix (MIMO representation)
- Further transformation into stationary-frame with complex valued transfer matrix possible
- Capture full dynamic response enabled by independent injection of pos. and neg. sequence
- Separate injection of f_p and $f_p 2f_1$ perturbations required to calculate impedance matrix
- Benchmarking FDM, PSCAD & test rig measurements up to 1000 Hz

- Calculated converter impedance matrix can be applied to impedance-based stability analysis.
- Stability properties of the converter-grid system can be compared to analytical or PSCAD models.
- The example shows the peak sensitivity calculated from the MIMO minor loop formed by the converter and grid impedances for an SCR = 1.55 – higher peak sensitivity indicates lower damping/stability margin.

SIEMFNS

Grid-Converter Test Rig

Conclusion & Outlook

Thank You for Your Attention!

SGRE TE EL Grid Connection Grid Compliance & Testing

Mohsen.Neshati@siemensgamesa.com October 2024

Grid-Converter Test Rig (G-CTR)

