Impact of Market Timing on the Profit of a Risk-Averse Load Aggregator

Lars Herre^{a,c}, Johanna L. Mathieu^b, Lennart Söder^c

^a DTU Technical University Denmark, Lyngby ^b University of Michigan, Ann Arbor, MI ^c KTH Royal Institute of Technology, Stockholm

Motivation

- Thermostatically Controlled Loads (TCL) can arbitrage energy prices and provide reserve
- Aggregator can exploit flexibility of TCLs to bid in both markets

How does **market timing** impact the **amount of reserve capacity** from controllable loads?

How does **market timing** impact the **profitability** of a load aggregator?

- Market timing includes
 - Lead time: time between gate closure and operation
 - Contract period: time period for which a bid is committed

Method

• On a rolling horizon: optimize the energy cost and reserve capacity offers at a given lead time and contract period, varied from 24 hours ahead to real-time.

Related Work

- Rolling horizon optimization of TCLs [Luo, Ranzi, Dong 2017; ...]
- Demand response and chance constrained programming [Brunnix, Dvorkin, Delarue, Dhaeseleer, Kirschen 2018]
- Two-stage chance constrained programming [Zhang, Wang, Zeng, Hu 2017; Zhao, Pan, Yao, Ju, Li 2020
- TCL "battery models" [Mathieu, Kamgarpour, Lygeros, Andersson, Callaway 2015; Hao, Sanandaji, Poolla, and Vincent 2015]

This presentation is based on:

L. Herre, J.L. Mathieu, L. Söder, "Impact of Market Timing on the Profit of a Risk-Averse Load Aggregator," *IEEE Transactions on Power Systems*, 35(5), 2020.

Market Framework

- Energy Market
 - Real-time market
 - SO publishes prices in 5 min resolution at a specified time before the 5 min interval.
- Reserve Market
 - Accepts bids until lead time T_n^R before each interval and releases the reserve price.
 - Accepted bids are paid for their symmetric reserve capacity.
 - Zero-mean activation signal, e.g., PJM Reg-D or FCR-N.
 - SO aims to procure reserve at minimal cost from a portfolio of different sources.
- Assumption: Load aggregator is a price taker.

Problem Formulation

• As an aggregator of TCLs, the objective is to minimize the cost of energy consumption $\lambda_{t,\omega}^E \cdot p_{t,\omega}^E$ while maximizing the profit from reserve capacity offers $\lambda_{t,\omega}^R \cdot p_t^R$:

• Subject to a "Thermal Energy Storage" model and constraints, where energy level s_t :

$$s_t = s_{t-1} + \Delta t \cdot (p_t^E - P_t^B) \quad \forall t$$

See: Mathieu, Kamgarpour, Lygeros, Andersson, Callaway, 2015

TCL Thermal Energy Storage Model

1000 TCLs: thermal parameters sampled from uniform distribution Ambient temperature affects the amount of flexibility (i.e., size of thermal battery)

Mathematical Formulations

Uncertainty

Lead Time T_n

Deterministic: Shorter optimization horizon

Time

Price Uncertainty: Higher Risk-Aversion

Price & Availability Uncertainty: Longer Lead Time

Results: Market Timing

Sweden FCR Market:
Gate closure 18:00 D-1
- Lead Time: 6h For the next day
- Contract Period: 24h

- set as *short* as *possible contract periods and*
- have gate closure as close as possible to operation.

Results: Sensitivity

Conclusions & Policy Implications

- SO sets lead time & contract period: Aggregator can only set the prediction horizon
- Aggregator should plan at least 4 hours ahead, use poor forecasts rather than no forecast.
- Highest profitability & reserve capacity in a RT reserve market
 - Long market timing constrains aggregator actions via availability uncertainty.
 - SOs should set short contract periods and have gate closure as close as possible to operation.

- Aggregator can balance operational cost and service quality by tuning chance constraint violation levels.
 - Method could be used to compute viable incentives to consumers
 - Incentives could be a function of service quality (chance constraint violation levels)

- Availability uncertainty narrows the energy/power bounds of a TCL aggregation, impacts reserve capacity, feasibility, and profitability. Price uncertainty only impacts profitability.
 - Price uncertainty impacts the results less than uncertainty in TCL availability.

Contact: Johanna Mathieu, jlmath@umich.edu

Acknowledgements: Swedish Energy Agency, STandUP for Wind, US NSF Grant #1845093.