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A World of Success Stories
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2017 AlphaZero – Chess, Shogi, Go 2019 AlphaStar – Starcraft II2017 Google DeepMind’s DQN

OpenAI – Rubik’s Cube

Boston Dynamics

Waymo


















Reality Kicks In
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Vast Opportunities
• Load flow analysis/state estimation

• Forecasting (wind, solar, load, prices)

• Fault detection, classification, and 
localization

• Accelerated market clearing

• Nonlinear control design/RL

• Parameter estimation/Stability 
assessment

• Many, many, more!

Possible Concerns
Power systems have little room for trial 
and error! Especially, at fast time scales

Machine Learning for Energy System
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Core challenge: The curse of dimensionality

 Statistical: Sampling in 𝒅𝒅 dimension with resolution 𝝐𝝐

 Computational: Verifying non-negativity of polynomials

Sample complexity:

For 𝝐𝝐 = 𝟎𝟎.𝟏𝟏 and 𝒅𝒅 = 𝟏𝟏𝟏𝟏𝟏𝟏, we 
would need 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 points.
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Copositive matrices: 

𝑥𝑥12 … 𝑥𝑥𝑑𝑑2 𝐴𝐴 𝑥𝑥12 … 𝑥𝑥𝑑𝑑2
T ≥ 0

Murty&Kadabi [1987]: Testing co-positivity is NP-Hard

Sum of Squares (SoS): 

𝑧𝑧 𝑥𝑥 𝑇𝑇𝑄𝑄𝑄𝑄(𝑥𝑥) ≥ 0,    𝑧𝑧𝑖𝑖 𝑥𝑥 ∈ ℝ 𝑥𝑥 , 𝑥𝑥 ∈ ℝ𝑑𝑑 ,𝑄𝑄 ≽ 0
Artin [1927] (Hilbert’s 17th problem):

Non-negative polynomials are sum of square of rational functions



Question: Are we asking too much?

• Learnability requires uniform approximation errors across the entire domain

• Lyapunov functions and control barrier functions require strict and exhaustive 
notions of invariance

• Control synthesis usually aims for the best (optimal) controller 
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Q: Can we provide local guarantees, and progressively expand as needed?

Q: Can we substitute invariance with less restrictive properties?

Q: Can we focus on feasibility, rather than optimality?

[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.
[L4DC 22] Castellano, Min, Bazerque, M, Reinforcement Learning with Almost Sure Constraints, Learning for Dynamics and Control (L4DC) Conference, 2022
[arXiv 21] Castellano, Min, Bazerque, M, Learning to Act Safely with Limited Exposure and Almost Sure Certainty, submitted to IEEE TAC, 2021, under review, preprint arXiv:2105.08748

[arXiv ‘22] Shen, Bichuch, M

[arXiv ‘22] Shen, Bichuch, M

[arXiv ’21, L4DC 22] Castellano, Min, Bazerque, M
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Yue Shen Maxim Bichuch



Motivation: Estimation of regions of attraction
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Having an approximation of the region of attraction allows us to

• Test the limits of controller designs
especially for those based on (possibly linear) approximations of nonlinear systems

• Verify safety of certain operating condition 
cart-pole quadcopter

self-driving HVAC system

. . . 

. . . 

robot arm

power grids 



Problem setup
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Continuous time dynamical system:  𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥(𝑡𝑡))
• Initial condition 𝑥𝑥0 = 𝑥𝑥(0), solution at time 𝑡𝑡: 𝜙𝜙(𝑡𝑡, 𝑥𝑥0).

𝛀𝛀-Limit Set Ω 𝑓𝑓 :

equilibrium limit cycle limit torus chaotic  attractor

Types of 𝛀𝛀-limit set



Limit set Ω(𝑓𝑓)
Problem setup
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Continuous time dynamical system:  𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥(𝑡𝑡))
• Initial condition 𝑥𝑥0 = 𝑥𝑥(0), solution at time 𝑡𝑡: 𝜙𝜙(𝑡𝑡, 𝑥𝑥0).
• The 𝜔𝜔-limit set of the system:  Ω(𝑓𝑓)

Region of attraction (ROA) of a set 𝑆𝑆 ⊆ Ω 𝑓𝑓 :  

Limit set Ω(𝑓𝑓) Basin of  𝒜𝒜(Ω)

Basin of  𝒜𝒜(Ω)
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Continuous time dynamical system:  𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥(𝑡𝑡))
• Initial condition 𝑥𝑥0 = 𝑥𝑥(0), solution at time 𝑡𝑡: 𝜙𝜙(𝑡𝑡, 𝑥𝑥0).
• The 𝜔𝜔-limit set of the system:  Ω(𝑓𝑓)

Asymptotically stable equilibrium at  𝑥𝑥∗ = (0,0)

Region of attraction (ROA) of a set 𝑆𝑆 ⊆ Ω 𝑓𝑓 :  

Simpler Example
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Continuous time dynamical system:  𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥(𝑡𝑡))
• Initial condition 𝑥𝑥0 = 𝑥𝑥(0), solution at time 𝑡𝑡: 𝜙𝜙(𝑡𝑡, 𝑥𝑥0).
• The 𝜔𝜔-limit set of the system:  Ω(𝑓𝑓)

Unstable equilibria  {( 3, 0), (− 3, 0)}

Region of attraction (ROA) of a set 𝑆𝑆 ⊆ Ω 𝑓𝑓 :  

Simpler Example



Region of attraction of stable equilibria
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Region of attraction (ROA) of a set 𝑆𝑆 ⊆ Ω 𝑓𝑓 :  

Assumption 1. The system 𝑥̇𝑥 𝑡𝑡 = 𝑓𝑓(𝑥𝑥(𝑡𝑡)) has an 
asymptotically stable equilibrium at 𝑥𝑥∗.   

Remark 1. It follows from Assumption 1 that the 
positively invariant ROA 𝓐𝓐 𝒙𝒙∗ is an open contractible 
set [Sontag, 2013], i.e., the identity map of 𝓐𝓐 𝒙𝒙∗ to 
itself is null-homotopic  [Munkres, 2000].  

_
E. Sontag. “Mathematical Control Theory: Deterministic Finite Dimensional Systems.” Springer 2013
J. R. Munkres. “Topology.” Prentice Hall 2000

𝓐𝓐 𝒙𝒙∗ : 



Invariant sets
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A set 𝐼𝐼 ⊆ ℝ𝑑𝑑 is positively invariant if and only if:   
Any trajectory starting in the set remains in inside it

• Invariant sets guarantee stability 
Lyapunov stability: solutions starting "close enough" to the equilibrium (within a distance 
𝛿𝛿) remain "close enough" forever (within a distance 𝜀𝜀) ) 

• Invariant sets further certify asymptotic stability via Lyapunov’s direct method 
Asymptotic stability: solutions that start close enough not only remain close enough but also 
eventually converge to the equilibrium.) 

• Regions of attraction are invariant sets, and so are the outcome of most 
approximation methods!



Challenges of working with invariant set
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Learning ROA 𝓐𝓐(𝒙𝒙∗) by finding an invariant set 𝓢𝓢 ⊆ 𝓐𝓐(𝒙𝒙∗)

• 𝓢𝓢 is topologically constrained
• If 𝒮𝒮 ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}, then 𝒮𝒮is connected

𝓐𝓐 𝒙𝒙∗ : 𝓢𝓢: 
A not invariant trajectory:

Example 1: 𝓢𝓢 ⊆ 𝓐𝓐 𝒙𝒙∗ is not 
connected, not invariant!



Challenges of working with invariant set
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Learning ROA 𝓐𝓐(𝒙𝒙∗) by finding an invariant set 𝓢𝓢 ⊆ 𝓐𝓐(𝒙𝒙∗)

𝓐𝓐 𝒙𝒙∗ : 𝓢𝓢: 
A not invariant trajectory:

• 𝓢𝓢 is topologically constrained
• If 𝒮𝒮 ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}, then 𝒮𝒮is connected

• 𝓢𝓢 is geometrically constrained
• 𝑓𝑓 should point inwards for 𝑥𝑥 ∈ 𝜕𝜕𝓢𝓢

Example 2: 𝓢𝓢 ⊆ 𝓐𝓐(𝒙𝒙∗), 𝑓𝑓 points 
outward on 𝝏𝝏𝝏𝝏, not invariant



Challenges of working with invariant set
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Learning ROA 𝓐𝓐(𝒙𝒙∗) by finding an invariant set 𝓢𝓢 ⊆ 𝓐𝓐(𝒙𝒙∗)

𝓐𝓐 𝒙𝒙∗ : 𝓢𝓢: 
A not invariant trajectory:

A subset of an invariant set is not 
necessary an invariant set

• 𝓢𝓢 is topologically constrained
• If 𝒮𝒮 ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}, then 𝒮𝒮is connected

• 𝓢𝓢 is geometrically constrained
• 𝑓𝑓 should point inwards for 𝑥𝑥 ∈ 𝜕𝜕𝓢𝓢



Recurrent sets: Letting things go, and come back
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Property of Recurrent Sets
• ℛ need not be connected

• ℛ does not require 𝑓𝑓 to point inwards on all 𝜕𝜕𝜕

Recurrent sets, while not invariant, 
guarantee that solutions that start in this set, 
will come back infinitely often, forever!   Recurrent set ℛ: 

A recurrent trajectory:

A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for any 𝑥𝑥0 ∈ ℛ, whenever 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ, 𝑡𝑡 ≥ 0, then 
∃𝑡𝑡′ > 𝑡𝑡 such that 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ. 



A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for any 𝑥𝑥0 ∈ ℛ, whenever 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ, 𝑡𝑡 ≥ 0, then 
∃𝑡𝑡′ > 𝑡𝑡 such that 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ. 

Recurrent sets: Letting things go, and come back
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Previous two good inner approximations of 𝓐𝓐(𝒙𝒙∗) are recurrent sets



Recurrent sets are subsets of the region of attraction
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A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for 𝑥𝑥0 ∈ ℛ, 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ ⇒ ∃𝑡𝑡′ > 𝑡𝑡, s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ

Theorem 2. Let ℛ ⊂ ℝ𝑑𝑑 be a compact set satisfying 𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅. 
Then: 

ℛ ∩ Ω 𝑓𝑓 ≠ ∅
ℛ ⊂ 𝒜𝒜(ℛ ∩ Ω 𝑓𝑓 )ℛ is recurrent 

ℛ: 𝓐𝓐 𝒙𝒙∗ : 

recurrent not recurrent not recurrent
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A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for 𝑥𝑥0 ∈ ℛ, 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ ⇒ ∃𝑡𝑡′ > 𝑡𝑡, s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ

Corollary 2. Let Assumptions 1 and 2 hold, 
and ℛ ⊂ ℝ𝑑𝑑 be a compact set satisfying 
𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅. Then: 

ℛ ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}
ℛ ⊂ 𝒜𝒜(𝑥𝑥∗)ℛ is recurrent 

Assumption 2. The 𝜔𝜔-limit set  Ω 𝑓𝑓 is composed by hyperbolic equilibrium 
points, with only one of them, say 𝑥𝑥∗, being asymptotically stable.



Recurrent sets are subsets of the region of attraction
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A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for 𝑥𝑥0 ∈ ℛ, 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ ⇒ ∃𝑡𝑡′ > 𝑡𝑡, s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ

Corollary 2. Let Assumptions 1 and 2 hold, 
and ℛ ⊂ ℝ𝑑𝑑 be a compact set satisfying 
𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅. Then: 

ℛ ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}
ℛ ⊂ 𝒜𝒜(𝑥𝑥∗)ℛ is recurrent 

Idea: Use recurrence as a mechanism for finding inner approximations of 𝒜𝒜(𝑥𝑥∗)
Potential Issues: 
• We do not know how long it takes to come back!
• We need to adapt results to trajectory samples

?



𝓐𝓐 𝒙𝒙∗

𝛿𝛿

𝛿𝛿 𝒙𝒙∗

trajectory:

𝝉𝝉-recurrent sets
A set ℛ is 𝝉𝝉-recurrent if whenever 𝑥𝑥0 ∈ ℛ,∃ 𝑡𝑡′ ∈ (0, 𝜏𝜏] s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ
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𝝉𝝉-recurrent set ℛ: 
trajectory:

Time elapsed ≤ 𝝉𝝉

Theorem 3. Under Assumption 1, any compact set ℛ satisfying:

𝑥𝑥∗ + ℬ𝛿𝛿 ⊆ ℛ ⊆ 𝒜𝒜 𝑥𝑥∗ \{𝜕𝜕𝜕𝜕 𝑥𝑥∗ +int ℬ𝛿𝛿}

is 𝝉𝝉-recurrent for 𝜏𝜏 ≥ ̅𝜏𝜏(𝛿𝛿) ≔ 𝑐𝑐 𝛿𝛿 − ̅𝑐𝑐(𝛿𝛿)
𝑎𝑎(𝛿𝛿)

.

𝓐𝓐 𝒙𝒙∗ : 
ℛ: 



Recurrent sets are subsets of the region of attraction
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Corollary 2. Let Assumptions 1 and 2 hold, 
and ℛ ⊂ ℝ𝑑𝑑 be a compact set satisfying 
𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅. Then: 

ℛ ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}
ℛ ⊂ 𝒜𝒜(𝑥𝑥∗)ℛ is recurrent 

Idea: Use recurrence as a mechanism for finding inner approximations of 𝒜𝒜(𝑥𝑥∗)
Potential Issues: 
• We do not know how long it takes to come back!
• We need to adapt results to trajectory samples

A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for 𝑥𝑥0 ∈ ℛ, 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ ⇒ ∃𝑡𝑡′ > 𝑡𝑡, s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ
?



Learning recurrent sets from k-length trajectory samples
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• Consider finite length trajectories: 
𝑥𝑥𝑛𝑛 = 𝜙𝜙 𝑛𝑛𝜏𝜏𝑠𝑠, 𝑥𝑥0 , 𝑥𝑥0 ∈ ℝ𝑑𝑑 ,𝑛𝑛 ∈ ℕ,

where 𝜏𝜏𝑠𝑠 > 0 is the sampling period.

• A set ℛ ⊆ ℝ𝑑𝑑 is 𝑘𝑘-recurrent  if whenever 𝑥𝑥0 ∈ ℛ, 
then ∃ 𝑛𝑛 ∈ {1, … ,𝑘𝑘} s.t. 𝑥𝑥𝑛𝑛 ∈ ℛ

𝒌𝒌-recurrent set ℛ: 
trajectory:

steps elapsed ≤ 𝒌𝒌
(time elapsed ≤ 𝒌𝒌𝝉𝝉𝒔𝒔)

𝑥𝑥0

𝑥𝑥1

𝑥𝑥2

Sufficiency:

ℛ is 𝑘𝑘-recurrent ℛ is 𝜏𝜏-recurrent 
with 𝜏𝜏 = 𝑘𝑘𝑘𝑘𝑠𝑠

ℛ is compact
𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅ ℛ ⊂ 𝒜𝒜(𝑥𝑥∗)

(Corollary 2, under Assumption 2)

Theorem 4. Under Assumption 1, any compact set ℛ satisfying:
ℬ𝛿𝛿 + 𝑥𝑥∗ ⊆ ℛ ⊆ 𝒜𝒜 𝑥𝑥∗ \{𝜕𝜕𝒜𝒜 𝑥𝑥∗ +int ℬ𝛿𝛿}

is 𝑘𝑘-recurrent for any 𝑘𝑘 > �𝑘𝑘 ∶= ̅𝜏𝜏(𝛿𝛿)/𝜏𝜏𝑠𝑠.

Necessity:



Recurrent sets are subsets of the region of attraction
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Corollary 2. Let Assumptions 1 and 2 hold, 
and ℛ ⊂ ℝ𝑑𝑑 be a compact set satisfying 
𝜕𝜕ℛ ∩ Ω 𝑓𝑓 = ∅. Then: 

ℛ ∩ Ω 𝑓𝑓 = {𝑥𝑥∗}
ℛ ⊂ 𝒜𝒜(𝑥𝑥∗)ℛ is recurrent 

Idea: Use recurrence as a mechanism for finding inner approximations of 𝒜𝒜(𝑥𝑥∗)
Potential Issues: 
• We do not know how long it takes to come back!
• We need to adapt results to trajectory samples

A set ℛ ⊆ ℝ𝑑𝑑 is recurrent if for 𝑥𝑥0 ∈ ℛ, 𝜙𝜙 𝑡𝑡, 𝑥𝑥0 ∉ ℛ ⇒ ∃𝑡𝑡′ > 𝑡𝑡, s.t. 𝜙𝜙 𝑡𝑡′, 𝑥𝑥0 ∈ ℛ
?



Sphere approximations of RoA
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Algorithm:

• Initialize 𝒮̂𝒮(0) as 𝒮̂𝒮(0) ≔ {𝑥𝑥| 𝑥𝑥 2 ≤ 𝑏𝑏 0 ≔ 𝑐𝑐} ⊇ ℬ𝛿𝛿

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮(0): 
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• Initialize 𝒮̂𝒮(0) as 𝒮̂𝒮(0) ≔ {𝑥𝑥| 𝑥𝑥 2 ≤ 𝑏𝑏 0 ≔ 𝑐𝑐} ⊇ ℬ𝛿𝛿

• For iteration 𝑖𝑖 = 0,1, … do: (set updates)
• For iteration 𝑗𝑗 = 0,1, … do: (samples)

• Generate random sample 𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝒮̂𝒮(𝑖𝑖) uniformly

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮(0): 

𝑝𝑝𝑖𝑖𝑖𝑖

Sphere approximations of RoA
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• Initialize 𝒮̂𝒮(0) as 𝒮̂𝒮(0) ≔ {𝑥𝑥| 𝑥𝑥 2 ≤ 𝑏𝑏 0 ≔ 𝑐𝑐} ⊇ ℬ𝛿𝛿

• For iteration 𝑖𝑖 = 0,1, … do:
• For iteration 𝑗𝑗 = 0,1, … do:

• Generate random sample 𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝒮̂𝒮(𝑖𝑖) uniformly
• If 𝑝𝑝𝑖𝑖𝑖𝑖 is a counter-example w.r.t 𝒮̂𝒮(𝑖𝑖) do: We say sample point 𝑝𝑝𝑖𝑖𝑖𝑖 is a valid 𝑘𝑘-recurrent point w.r.t

current approximation 𝒮̂𝒮(𝑖𝑖) if starting from 𝑥𝑥0 = 𝑝𝑝𝑖𝑖𝑖𝑖,
∃ 𝑛𝑛 ∈ {1, … , 𝑘𝑘},  s.t. 𝑥𝑥𝑛𝑛 ∈ 𝒮̂𝒮(𝑖𝑖).

Otherwise, we say 𝑝𝑝𝑖𝑖𝑖𝑖 is a counter-example.

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮(0): 

𝑝𝑝𝑖𝑖𝑖𝑖

𝝓𝝓(𝒕𝒕,𝒑𝒑𝒊𝒊𝒊𝒊):

Counter example

Sphere approximations of RoA
Algorithm:
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𝑏𝑏(𝑖𝑖+1) = 𝑝𝑝𝑖𝑖𝑖𝑖 2

− 𝜀𝜀;
𝒮̂𝒮(𝑖𝑖+1) = 𝑥𝑥 𝑥𝑥 2 ≤ 𝑏𝑏 𝑖𝑖+1 ,

where 𝜀𝜀 > 0 is an algorithm parameter expressing the 
level of conservativeness in our update. 

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮(0): 

𝑝𝑝𝑖𝑖𝑖𝑖

𝒮̂𝒮(1): 𝜀𝜀
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Choice of trajectory length 𝒌𝒌:
• �𝑘𝑘(𝛿𝛿) depends highly non-trivially on 𝛿𝛿.
• If 𝑘𝑘 < �𝑘𝑘(𝛿𝛿),  we get  𝑏𝑏(𝑖𝑖) < 0 ⟹ Failure!

• Solution: doubling the size of 𝑘𝑘, i.e., 𝑘𝑘+ = 2𝑘𝑘, every time we fail.

With 𝒌𝒌-doubling, the total number of counter-examples is bounded by

#counter-examples ≤ 𝒃𝒃 𝟎𝟎

𝜺𝜺
𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 �𝒌𝒌(𝛿𝛿)

Choice of 𝜺𝜺: 𝑏𝑏 𝑖𝑖+1 = 𝑝𝑝𝑖𝑖𝑖𝑖 − 𝜀𝜀
• Given 𝑘𝑘 > �𝑘𝑘, any set 𝒮𝒮(𝑖𝑖) = {𝑥𝑥: 𝑥𝑥 ≤ 𝑏𝑏 𝑖𝑖 } satisfying:

ℬ𝛿𝛿 ⊆ 𝒮𝒮 𝑖𝑖 ⊆ 𝒜𝒜 0 \{𝜕𝜕𝜕𝜕 0 +int ℬ𝛿𝛿}
is k-recurrent.

• Let ℬ𝑟𝑟 the largest ball inside 𝒜𝒜 0 \{𝜕𝜕𝜕𝜕 0 +int ℬ𝛿𝛿}
• Then, if 𝜀𝜀 ≤ 𝑟𝑟 − 𝛿𝛿 we always guarantee ℬ𝛿𝛿 ⊆ 𝒮𝒮 𝑖𝑖

𝓑𝓑𝒓𝒓

𝑟𝑟

𝑝𝑝𝑖𝑖𝑖𝑖

𝜀𝜀

𝛿𝛿

𝛿𝛿

𝒮̂𝒮(𝑖𝑖): 

𝓐𝓐 𝒙𝒙∗
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𝓐𝓐 𝟎𝟎 : 



Polytope approximations of RoA
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Algorithm:

• Initialize 𝒮̂𝒮(0) as 𝒮̂𝒮(0) ≔ {𝑥𝑥|𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 0 ≔ 𝑐𝑐𝕝𝕝𝑛𝑛} ⊇ ℬ𝛿𝛿

𝓐𝓐 𝒙𝒙∗ : 𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮(0): 

𝒮̂𝒮(1): 

𝑝𝑝𝑖𝑖𝑖𝑖

𝑎𝑎𝑙𝑙∗

Exploration direction matrix 𝐴𝐴 ≔ 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ⊆
ℝ𝑛𝑛×𝑑𝑑, where each row vector 𝑎𝑎𝑙𝑙 is a 
normalized exploration direction indexed by 𝑙𝑙 ∈
{1, … , 𝑛𝑛}.
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𝓐𝓐 𝟎𝟎 : 



Multi-center approximation
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• Consider 𝒉𝒉 ∈ ℕ+ center points 𝒙𝒙𝒒𝒒 indexed by 𝒒𝒒 ∈ 𝟏𝟏, … ,𝒉𝒉 .
• Let the first center point 𝑥𝑥1 = 𝑥𝑥∗ = 0
• Additional center point 𝑥𝑥2, … , 𝑥𝑥ℎ can be designed chosen uniformly.

𝓐𝓐 𝒙𝒙∗ : 

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3
∂

∂
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(0)

: 
𝑥𝑥1

𝑥𝑥2 𝒮̂𝒮2
(0)

: 

𝑥𝑥3

𝒮̂𝒮3
(0)

: 

• Respectively defined approximations centered at each 𝒙𝒙𝒒𝒒
• (Sphere case)      𝒮̂𝒮𝑞𝑞

(𝑖𝑖) ≔ {𝑥𝑥| 𝑥𝑥 − 𝑥𝑥𝑞𝑞 2
≤ 𝑏𝑏𝑞𝑞

𝑖𝑖 }

• (Polytope case)   𝒮̂𝒮𝑞𝑞
(𝑖𝑖) ≔ {𝑥𝑥|𝐴𝐴(𝑥𝑥 − 𝑥𝑥𝑞𝑞) ≤ 𝑏𝑏𝑞𝑞

𝑖𝑖 }



Multi-center approximation

July 14 2022 Enrique Mallada (JHU) 24

• Consider 𝒉𝒉 ∈ ℕ+ center points 𝒙𝒙𝒒𝒒 indexed by 𝒒𝒒 ∈ 𝟏𝟏, … ,𝒉𝒉 .
• Let the first center point 𝑥𝑥1 = 𝑥𝑥∗ = 0
• Additional center point 𝑥𝑥2, … , 𝑥𝑥ℎ can be designed chosen uniformly.

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮1
(0)

: 
𝑥𝑥1

𝑥𝑥2 𝒮̂𝒮2
(0)

: 

𝑥𝑥3

𝒮̂𝒮3
(0)

: 

• Respectively defined approximations centered at each 𝒙𝒙𝒒𝒒
• (Sphere case)      𝒮̂𝒮𝑞𝑞

(𝑖𝑖) ≔ {𝑥𝑥| 𝑥𝑥 − 𝑥𝑥𝑞𝑞 2
≤ 𝑏𝑏𝑞𝑞

𝑖𝑖 }

• (Polytope case)   𝒮̂𝒮𝑞𝑞
(𝑖𝑖) ≔ {𝑥𝑥|𝐴𝐴(𝑥𝑥 − 𝑥𝑥𝑞𝑞) ≤ 𝑏𝑏𝑞𝑞

𝑖𝑖 }

• Multiple centers approximation



Multi-center approximation

July 14 2022 Enrique Mallada (JHU) 24

• Consider 𝒉𝒉 ∈ ℕ+ center points 𝒙𝒙𝒒𝒒 indexed by 𝒒𝒒 ∈ 𝟏𝟏, … ,𝒉𝒉 .
• Let the first center point 𝑥𝑥1 = 𝑥𝑥∗ = 0
• Additional center point 𝑥𝑥2, … , 𝑥𝑥ℎ can be designed chosen uniformly.

𝓐𝓐 𝒙𝒙∗ : 

𝒮̂𝒮1
(0)

: 

𝑝𝑝𝑖𝑖𝑖𝑖

𝒮̂𝒮1
(1)

: 

𝜀𝜀

𝑥𝑥1

𝑥𝑥2

𝒮̂𝒮2
(0)

: 

𝒮̂𝒮2
(1)
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• Multiple centers approximation

• If 𝐩𝐩𝐢𝐢𝐢𝐢 is a counter-example w.r.t

• We shrink every  𝒮̂𝒮𝑞𝑞
(𝑖𝑖)

satisfying  𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝒮̂𝒮𝑞𝑞
(𝑖𝑖)

• For the rest approximations, we simply let 𝒮̂𝒮𝑞𝑞
(𝑖𝑖+1) = 𝒮̂𝒮𝑞𝑞

(𝑖𝑖)
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𝓐𝓐 𝟎𝟎 : (10 polytope approximations) (50 sphere approximations) 
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_
M. Tacchi et al “Power system transient stability analysis using SoS programming” Power System Computation Conference (PSCC) 2018

SoS approx. in red (2d-sections)
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• Synchronous machine connected to infinite bus
• 𝑡𝑡1 lower line is short-circuited
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_
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.

Multi-center in green: 𝜏𝜏𝑠𝑠 = 1, 𝑘𝑘 = 40, 2.5K centers
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Multi-center in green: 𝜏𝜏𝑠𝑠 = 1, 𝑘𝑘 = 40, 1.5K points

_
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, preprint arXiv:2204.10372.



Conclusions and Future work

• Take-aways
• Proposed a relaxed notion of invariance known as recurrence.

• Provide necessary and sufficient conditions for a recurrent set to be an inner-
approximation of the ROA.

• Our algorithms are sequential, and only incur a limited number of counter-examples.

• Ongoing work 
• Sample complexity bounds, smart choice of multi-points, control recurrent sets
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Thanks!
Related Publication:
[arXiv 22] Shen, Bichuch, M, Model-free Learning of Regions of Attraction via Recurrent Sets, submitted to CDC 2022, 
preprint arXiv:2204.10372.

Enrique Mallada
mallada@jhu.edu

http://mallada.ece.jhu.edu

Enrique Mallada (JHU)July 14 2022 28

Yue Shen Maxim Bichuch


	Title Slide
	A World of Success Stories
	Reality Kicks In
	Machine Learning for Energy System
	Core challenge: The curse of dimensionality
	Question: Are we asking too much? 1
	Question: Are we asking too much? 2
	Model-Free Learning of Regions of Attraction via Recurrent Sets
	Motivation: Estimation of regions of attraction
	Problem setup 1
	Problem setup 2
	Problem setup 3
	Problem setup 4
	Problem setup 5
	Problem setup 6
	Region of attraction of stable equilibria
	Invariant sets
	Challenges of working with invariant set 1
	Challenges of working with invariant set 2
	Challenges of working with invariant set 3
	Recurrent sets: Letting things go, and come back 1
	Recurrent sets: Letting things go, and come back 2
	Recurrent sets are subsets of the region of attraction 1
	Recurrent sets are subsets of the region of attraction 2
	Recurrent sets are subsets of the region of attraction 3
	𝝉-recurrent sets
	Recurrent sets are subsets of the region of attraction 4
	Learning recurrent sets from k-length trajectory samples
	Recurrent sets are subsets of the region of attraction 5
	Sphere approximations of RoA 1
	Sphere approximations of RoA 2
	Sphere approximations of RoA 3
	Sphere approximations of RoA 4
	Sphere approximations of RoA 5
	Parameter choice
	Algorithm Result - Sphere Approximations
	Polytope approximations of RoA
	Algorithm Result – Polytope Approximation
	Multi-center approximation 1
	Multi-center approximation 2
	Multi-center approximation 3
	Multi-center approximation 4
	Algorithm results – Multi-center approximation
	Transient Stability Analysis 1
	Transient Stability Analysis 2
	Transient Stability Analysis 3
	Transient Stability Analysis 4
	Transient Stability Analysis 5
	Transient Stability Analysis 6
	Transient Stability Analysis 7
	Conclusions and Future work
	Thanks!

