

Optimal Power Flow Sensitivities

Analysis & Applications

Manish K. Singh

manish.singh@wisc.edu

Sep 6, 2024

^C Motivation: Power-system transition

Increasing renewables, DERs, prosumers...

Need to solve problems *faster* over a *broader range* of operating conditions...

Outline

"Life can only be understood backwards, but it must be lived forwards" Søren Kierkegaard

Today's talk

Power flow linearization

.

Outstanding contributions from Saverio, Andrey, Kyri, and several others...

.....

OPF-1

OPF-2

A Survey of Relaxations and **Approximations of the Power Flow**

Daniel K. Molzahn¹ and Ian A. Hiskens²

Optimal linearization for optimization

$$\begin{aligned} \mathbf{x}^{*}(\boldsymbol{\theta}) &= \arg\min_{\mathbf{x}} \ \mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} \quad (\mathsf{OPF1}) \\ &\text{s.to} \ \mathbf{x}^{\mathsf{T}} \mathbf{P}_{j} \mathbf{x} + \mathbf{q}_{j}^{\mathsf{T}} \mathbf{x} = \mathbf{r}_{j}^{\mathsf{T}} \boldsymbol{\theta}, \quad j = 1 : J \\ & \mathbf{S} \mathbf{x} + \mathbf{T} \boldsymbol{\theta} \le \mathbf{u} \end{aligned}$$

$$\begin{aligned} \hat{\mathbf{x}}^{*}(\boldsymbol{\theta}) &= \arg\min_{\mathbf{x}} \ \mathbf{x}^{\mathsf{T}} \mathbf{C} \mathbf{x} \quad (\mathsf{OPF2}) \\ &\text{s.to} \ \mathbf{A} \mathbf{x} + \mathbf{b} = \mathbf{R} \boldsymbol{\theta} \\ & \mathbf{S} \mathbf{x} + \mathbf{T} \boldsymbol{\theta} \le \mathbf{u} \end{aligned}$$

Example of an application-informed metric

$$\ell(\mathbf{A},\mathbf{b}) = \mathbb{E}_{\boldsymbol{\theta} \sim p_{\boldsymbol{\theta}}} \|\mathbf{x}^{\star}(\boldsymbol{\theta}) - \hat{\mathbf{x}}^{\star}(\boldsymbol{\theta})\|_{2}^{2} \approx \frac{1}{S} \sum_{s=1}^{S} \|\mathbf{x}^{\star}(\boldsymbol{\theta}_{s}) - \hat{\mathbf{x}}^{\star}(\boldsymbol{\theta}_{s})\|_{2}^{2}$$

Obtain optimal linearization as

$$(\mathbf{A}^{\star}, \mathbf{b}^{\star}) = \arg \min_{(\mathbf{A}, \mathbf{b}) \in \mathcal{A}} \ell(\mathbf{A}, \mathbf{b}; \boldsymbol{\theta}_{s}, \mathbf{x}^{\star}(\boldsymbol{\theta}_{s}))$$
 bilevel optimization

Gradient descent-based optimization

$$abla_{\hat{\mathbf{x}}^{\star}}\ell \qquad
abla_{\mathbf{A},\mathbf{b}}\hat{\mathbf{x}}^{\star} \quad \text{sensitivity analysis} \quad \text{presented for }
abla_{\boldsymbol{ heta}}\hat{\mathbf{x}}^{\star}$$
easy

Optimal power flow sensitivities

Consider a parametric OPF setting

For QPs, see MPP

KKT
$$\nabla_{\mathbf{x}} f + (\nabla_{\mathbf{x}} \mathbf{g})^{\top} \boldsymbol{\lambda} = \mathbf{0}$$

 $\mathbf{g} \odot \boldsymbol{\lambda} = \mathbf{0}$
 $\mathbf{g} \leq \mathbf{0}, \quad \boldsymbol{\lambda} \geq \mathbf{0}$

- Perturb KKT to find point $(\mathbf{x} + d\mathbf{x}, \mathbf{\lambda} + d\mathbf{\lambda})$ optimal for $\theta + d\theta$ [Castillo-Conejo+'06]
- Unless $(\mathbf{x}, \boldsymbol{\lambda}; \boldsymbol{\theta})$ is degenerate, perturbed point satisfies KKT inequalities too
- Compute total differential of two equality constraints $\lambda \odot (\nabla_x \mathbf{g} \cdot d\mathbf{x} + \nabla_\theta \mathbf{g} \cdot d\theta) + \mathbf{g} \odot d\lambda = \mathbf{0}$

• Obtain linear system $\mathbf{S}\begin{bmatrix} d\mathbf{x} \\ d\boldsymbol{\lambda} \end{bmatrix} = \mathbf{U} d\boldsymbol{\theta}$ find $(\nabla_{\boldsymbol{\theta}} \mathbf{x}, \nabla_{\boldsymbol{\theta}} \boldsymbol{\lambda})$ if S⁻¹ exists

Q) When is ${f S}$ invertible? What if it is not?

Existence of sensitivities

• *When?* certain second-order optimality conditions and LICQ holds [Fiacco'76]

Linear independence constraint qualification (LICQ) requires $\{\nabla_x g_i \mid \lambda_i > 0\}$ to be linearly independent

- LICQ often fails for inverter dispatch posed as a quadratic program [Singh et al'20]
- *What then?* For QPs, multiparametric programming can still provide $\nabla_{\theta} \mathbf{x}$
- For general non-convex OPF, the system $\mathbf{S}\begin{bmatrix} d\mathbf{x} \\ d\boldsymbol{\lambda} \end{bmatrix} = \mathbf{U} d\boldsymbol{\theta}$, if consistent, has a unique solution in $d\mathbf{x}$
- *Happy news:* When S is not invertible, Jacobian $\nabla_{\theta} x$ may still exist

Sensitivity analysis takeaways

Sensitivities of optimal primal/dual variable w.r.t. any parameter can be computed for (non) convex OPF

Given a minimizer, one can compute sensitivities for optimization problems just by solving a linear system

Can we do sensitivity analysis when using convex relaxations?

- Sensitivity computation requires optimal primal and dual variables, and cost/constraint functions
- When exact, relaxations yield true optimal primal variables, but different dual variables! O
- More happy news: We can use SDP or SOCP relaxations (when exact) to compute sensitivities for nonconvex problems

Singh, Kekatos, Giannakis, "Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural Networks," *IEEE Trans. Power Sys.,* 2021 Jalali, Singh, Kekatos, Giannakis, Liu, "Fast Inverter Control by Learning the OPF mapping using Sensitivity Informed Gaussian Processes," *IEEE Trans. Smart Grids,* 2022

Preliminary tests

IEEE 9 bus case

3 generators

- Nominal linearization is at the PF solution at base case
- 25 training samples, 200 gradient steps
- 25 test samples, error reduction 70%

Next steps

- □ Other meaningful error metrics
- □ Better optimization techniques
- Convergence analysis

Outline

Learning to optimize

Sensitivity analysis

Power flow linearization

Learning for OPF

- DER setpoints
- warm-starts
- binding constraints

Polynomial regression

- DNN, GP,...
- High data requirement

(Physics) informed regularizer

- Can be done for DNN & GP
- *Reduced data requirement*

Sensitivity-informed learning

Augmented supervised-learning cost

$$\min_{\mathbf{w}} \sum_{t=1}^{T} \left[\| \hat{\mathbf{x}}(\boldsymbol{\theta}_{t}) - \mathbf{x}(\boldsymbol{\theta}_{t}) \|_{2}^{2} + \rho \| \nabla_{\boldsymbol{\theta}} \hat{\mathbf{x}}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathbf{x}(\boldsymbol{\theta}_{t}) \|_{F}^{2} \right]$$

P-DNN SI-DNN

PJM 5-bus example: Solve AC-OPF over varying loads 2+4 to dispatch GENs 1+5

actual OPF solution

P-DNN prediction

SI-DNN prediction

3

2

5

 $(\sim$

4

^C Quantifying accuracy improvements

Training	P-D	NN	SI-DNN		
Size	MSE	Time	MSE	Time	
10	8.6	738	3.3	746	
50	4.3	739	2.1	756	
100	3.2 4	747	2.0	776	
250	1.9	302	2.0	332	

		IEEE 118-bus				Illinois 200-bus			
rair ze	P-D	P-DNN		SI-DNN		P-DNN		SI-DNN	
T ₁	MSE	Time	MSE	Time	MSE	Time	MSE	Time	
25	1.8	447	1.1	483	0.19	452	0.04	491	
50	1.7	458	1.1	527	0.15	456	0.04	524	
100	1.6	463	0.9	610	0.09	471	0.06	608	

Quantifying feasibility improvements

Average Test MSE [$\times 10^{-3}$] for predicting SDP solutions, and constraint violation statistics on the IEEE 39-bus system

Train.	P-DNN				SI-DNN			
Size	MSE	(a)	(b)	(c)	MSE	(a)	(b)	(c)
10	6.3	2.61	0.50	9.78	0.91	2.52	0.37	3.35
50	3.6	2.45	0.55	7.38	0.62	2.58	0.27	2.06
100	2.5	2.59	0.53	6.87	0.67	2.52	0.27	1.96
(a) #violations /instance; (b) max. violation; (c) mean violation $[\times 10^{-2}]$								

Sensitivity regularization is tantamount to local-approximation Vs point-approximation

- Sensitivities information improves learning
- ☑ Physics-based model regularization
- ☑ Approach applies to DC and AC OPF across solvers and relaxations
- ☑ Extensions possible to non-parametric learning models

Jalali, Singh, Kekatos, Giannakis, Liu, "Fast Inverter Control by Learning the OPF mapping using Sensitivity Informed Gaussian Processes," *IEEE Trans. Smart Grids*, 2022

Parting thoughts

- Sensitivity analysis of OPF is possible and "scalable"
- Application-informed PF linearization could be a treasure box
 - ☑ Use-inspired research
 - \blacksquare Bilevel optimization
 - ☑ Sensitivity analysis
- Scalable solutions combining physics & data will drive the future
- Sensitivities can help build the bridge
- I am looking for PhD students ©

Rationale for sensitivity regularization

Consider local approximations

True mapping DNN mapping

$$x(\theta_t + \epsilon) \approx x(\theta_t) + \epsilon \ x'(\theta_t)$$
$$\hat{x}_{\mathbf{w}}(\theta_t + \epsilon) \approx \hat{x}_{\mathbf{w}}(\theta_t) + \epsilon \ \hat{x}'_{\mathbf{w}}(\theta_t)$$

- Suppose ϵ is a zero-mean random variable with $\mathbb{E}[\epsilon^2] = \sigma^2$

$$\mathbb{E}_{\epsilon} \left[\left(\hat{x}_{\mathbf{w}}(\theta_t + \epsilon) - x(\theta_t + \epsilon) \right)^2 \right]$$

$$\approx \left(\hat{x}_{\mathbf{w}}(\theta_t) - x(\theta_t) \right)^2 + \sigma^2 \left(\hat{x}'_{\mathbf{w}}(\theta_t) - x'(\theta_t) \right)^2$$

 $\left(\min_{\mathbf{w}} \sum_{t=1}^{T} \left[\| \hat{\mathbf{x}}(\boldsymbol{\theta}_{t}) - \mathbf{x}(\boldsymbol{\theta}_{t}) \|_{2}^{2} + \rho \| \nabla_{\boldsymbol{\theta}} \hat{\mathbf{x}}(\boldsymbol{\theta}_{t}) - \nabla_{\boldsymbol{\theta}} \mathbf{x}(\boldsymbol{\theta}_{t}) \|_{F}^{2} \right]$

Sensitivity regularization is tantamount to local-approximation Vs point-approximation

Alternatively, viewed as (almost free) data augmentation