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Who are we? 

• An international team looking at the future of nonlinear programming 

• Development of a nonlinear optimization solver: MadNLP.jl 
- Winner of the 2023 COIN-OR cup! 
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MadNLP: a structure exploiting interior-point solver 

MadNLP 

• Written in pure Julia 

• Filter line-search IPM (ala Ipopt) 

• Flexible & Modular 

✓ CUDA-compatible 

✓ MPI-compatible 

Open-source: 
https://github.com/MadNLP/MadNLP.jl/ 
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Why GPUs? 

- End of Moore’s Law 

- GPUs power AI and scientifc computing (fuid, climate, bioinformatics) 

- The newest generation of supercomputers are using GPUs 

4 of 28 Source of the fgure: NVIDIA 
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Nonlinear programming: a reminder 

n variables, m inequality constraints, p equality constraints 

Continuous nonlinear problems 
Equality cons.Objective  g(x) = 0 

min f (x) subject to 
x∈Rn  h(x) ≤ 0 

The functions f , g , h are smooth, possibly nonconvex 

• Useful framework to solve practical engineering problems 

• Usually, we are interested only at fnding a local optimum 

• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO) 

Inequality cons. 

6 of 28 J. Nocedal, SJ. Wright. Numerical optimization. 
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Nonlinear programming: a reminder 

n variables, m inequality constraints, p equality constraints 

Continuous nonlinear problems 
Equality cons.Objective  g(x) = 0 

min f (x) subject to 
x∈Rn ,s∈Rm h(x) + s = 0 , s ≥ 0 

The functions f , g , h are smooth, possibly nonconvex 

• Useful framework to solve practical engineering problems 

• Usually, we are interested only at fnding a local optimum 

• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO) 

Slack 

6 of 28 J. Nocedal, SJ. Wright. Numerical optimization. 



Interior-point method 
Rewrite the (nonsmooth) KKT system as a smooth nonlinear system 

∇f (x) + ∇g(x)⊤ y + ∇h(x)⊤ z 
Dual variables 

Fµ(x , s; y , z, ν ) := 

 

 
= 0 

z − ν 

g(x) 
h(x) + s 

Sν − µe 

Interior-point method 

.

Complementarity cons., S = diag(s) 

Solve Fµ(x , s; y , z, ν) = 0 using Newton method while driving µ → 0. 

Augmented KKT system 

At iteration k, solve the Newton step ( ∇Fµ )dk = −Fk   

W 0 ∇g⊤ ∇h⊤ 

0 Σs 0 I 
∇g 0 0 0 
∇h I 0 0 

  

∇Fµ   
r1dx ds = −r2dy r3 

dz r4 

Figure: ∇Fµ with W = ∇2 L(·), Σs = S−1diag(ν)xx 7 of 28 
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Condensed KKT system 

Condensed KKT system 

The augmented KKT system is equivalent to 

K ∇g⊤ dx r1 + (∇h)⊤(Σs r4 + r2)= − 
∇g 0 dy r3 

with the condensed matrix K = W + ∇h⊤ Σs ∇h. 
We recover (ds , dz ) as 

ds s (r3 + dy ) , dz = Σs (∇h dx − r4) − r2 .= −Σ−1 

• Additional fll-in compared to augmented KKT 
system... 

• Useful when the number of inequality constraints 
m is large 
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Identifying the computational bottlenecks 

How to solve the Newton step? 

(∇Fµ)dk = −Fk 

Two computational bottlenecks: 
1. Evaluate derivatives and assemble KKT matrix ∇Fµ 

2. Solve KKT system ∇Fµdk = −Fk 
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Evaluating derivatives on the GPU 

Figure: Expression tree for exp(x2 + y2) (credit: JuMP.jl) 

Derivatives: Evaluate ∇Fµ requires Jacobian and Hessian 
- Rely on automatic diferentiation (AD) 
- Usually we formulate the nonlinear program inside a modeler, 

computing automatically the derivatives using the expression tree 
- Software: AMPL, GAMS, Pyomo, JuMP (all designed for CPU) 

Challenge: evaluating sparse derivatives on the GPU 

• GPU-accelerated AD frameworks already exist (Torch, Tensorfow, jax) 

• But none of them have full support for sparse and second-order 

A. Griewank, A. Walther. Evaluating derivatives: principles and techniques of algorithmic diferentiation. SIAM, 2008. 11 of 28 I. Dunning, J. Huchette, M. Lubin. "JuMP: A modeling language for mathematical optimization." SIAM review 59, no. 2 (2017). 



ds, arXiv:2307.16830.

ExaModels.jl: a prototype for sparse automatic diferentiation on GPU 
• Large-scale optimization problems almost always have repetitive 

patterns ⎥⎥ 
min f (l)(x ; pi

(l)) (SIMD abstraction) 
x♭≤x≤x♯ 

l∈[L] i∈[Il ] ⎥ ⎥ 
subject to g (m)(x ; qj ) + h(n)(x ; sk 

(n)) = 0, ∀m ∈ [M]
j∈[Jm ] 

n∈[Nm ] k∈[Kn ] 

• Repeated patterns are made available by always specifying the models as 
iterable objects 

constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i 1:N-2) 

• For each repeatitive pattern, the derivative evaluation kernel is 
constructed & compiled, and executed in parallel over multiple data 

Observation 

� �

=

.

ExaModels.jl is efective at evaluating the derivatives of 
practical nonlinear problems (e.g. optimal power fow) 

12 of 28 S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho 
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Solving the KKT system on the GPU 

= × 

Figure: Matrix factorization using a direct solver 

Linear solve: Solve the KKT system ∇Fµdk = −Fk 

- Usually require factorizing ∇Fµ (convex: Cholesky, nonconvex: LBL) 

- KKT system is highly ill-conditioned → numerical pivoting 

- Software: HSL, Pardiso 

Challenge: solving the sparse linear system on the GPU 

• Ill-conditioning of the KKT system: iterative solvers are often not practical 
• Direct solver requires numerical pivoting for numerical stability, 

an operation difcult to parallelize 

14 of 28 B. Tassef, C. Cofrin, A. Wächter, C. Laird. "Exploring benefts of linear solver parallelism on modern nonlinear optimization applications.", 2019 
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Roadmap 

Solution 1: Densifcation 

• Reduce the KKT system down to a dense matrix 

• Akin to a null-space method (also known as reduced Hessian) 

• Works well if the number of degrees of freedom is small 

Solution 2: Condensation 

• Reduce the KKT system to a sparse positive defnite matrix 

• Sparse Cholesky is stable without numerical pivoting 
→ runs in parallel on the GPU (cuDSS) 

• More versatile approach 

15 of 28 
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Solution 1: Densifcation 

• Split the decision variables into independent (=control) 
and dependent variables (=states) 

• Reduce the KKT system to a dense matrix by eliminating the state 
variables 

Problem with a physical structure 

• u: control (=degrees of freedom) 

• x : state 

min 
x,u 

f (x , u) s.t. 

   

g(x , u) = 0 

h(x , u) ≤ 0 

Physical cons. 

Operational cons. 

16 of 28 L. Biegler, J. Nocedal, C. Schmid. "A reduced Hessian method for large-scale constrained optimization." SIAM Journal on Optimization 5, no. 2 (1995) 
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Null-space strategy 
We can exploit the structure in the condensed KKT 
system (=split x from u)   # #G⊤Kuu Kux du r1 Kxu Kxx G 

u

x 
⊤ dx = − r2 

Gu Gx 0 dy r3 

Reduced KKT system 

If the Jacobian Gx is invertible, then 
the condensed KKT system is equivalent to 

G−⊤K̂uu du = −r1 + Gu 
⊤ 

x r2 + Kux Gx 
−1r3 

The reduced matrix K̂uu ∈ Rnu ×nu is dense and satisfes 

ˆ I ⊤ Kuu Kux IKuu = −G−1 −G−1 
x Gu Kxu Kxx x Gu 

→ the reduction runs efciently in parallel on the GPU 

17 of 28 F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023) 
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Application to the optimal power fow 

The problem has a graph structure we can exploit: 
• u: power generations 

• x : voltage magnitudes and angles 

Optimal power fow 

min 
x,u 

f (x , u) s.t. 

   

g(x , u) = 0 

h(x , u) ≤ 0 

Power fow balance 

Line fow constraints 

Structure is explicit! 

18 of 28 
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Numerical results on large-scale OPF instances 

Observations 

• The performance depends on the number of controls in the problem 
(the less, the better) 

• Results on the AC OPF problem: the reduction gives better results than 
SOTA if ratio < 7% 

19 of 28 F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023) 
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Security-constrained optimal power fow 
• N scenarios, with one coupling u (power generations) 
• One recourse per scenario: states x1, · · · , xN 

Stochastic optimal power fow 

min 
xi ,u 

⎥ 

i 

fi (xi , u) 

s.t. gi (xi , u) = 0 ∀i = 1, · · · , N 

hi (xi , u) ≤ 0 ∀i = 1, · · · , N 

Power fow balance 

Line fow constraints 

Fact 
The condensed KKT system has a block-arrowhead 
structure 

K = W + ∇h⊤ Σs ∇h = 

  

Kx1x1 Kx1u 

. . . 
. . . 

KxN xN 

Kux1 . . . Kuu 

  

20 of 28 



Running a nonlinear solver on multiple GPUs with CUDA-MPI 

Solution 

.

Nested reduction using hierarchical Schur complement on multiple GPUs 

Apply directly to the solution of two-stage nonlinear programs 

8 16 32 64 128 256 512
N scenarios

10 2

10 1

100

101

Ti
m

e 
[s

]

Linear solver time against N
ma27
ma57

Figure: The 2000s: frontal solve using sparse LDL factorization (HSL) 

21 of 28 F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU Architectures." 
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Solution 

.

Nested reduction using hierarchical Schur complement on multiple GPUs 

Apply directly to the solution of two-stage nonlinear programs 
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Figure: The 2010s: Schur with incomplete augmented factorization (Pardiso) 
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Running a nonlinear solver on multiple GPUs with CUDA-MPI 

Solution 

.

Nested reduction using hierarchical Schur complement on multiple GPUs 

Apply directly to the solution of two-stage nonlinear programs 
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Figure: The 2020s: Schur complement with multiple RHS on GPUs 
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Solution 2: Condensation of the linear system 

We look again at the condensed KKT system: 

K ∇g⊤ dx w1= − 
∇g 0 dy w2 

with the condensed matrix K = W + ∇h⊤ Σs ∇h. 

→ Two strategies to reduce it down to a positive defnite matrix: 
1. LiftedKKT 

2. HyKKT 

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho22 of 28 S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 
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LiftedKKT 

Idea: equality relaxation 

�

.

For a τ > 0 small enough, solve the relaxed problem 

|g(x)| ≤ τ
min f (x) subject to 
x∈Rn h(x) ≤ 0 

Reformulating the problem with slack variables: 

min f (x) subject to hτ (x) + s = 0 , s ≥ 0 
x∈Rn ,s∈Rm+p 

with hτ (x) = (|g(x)| − τ, h(x)) 

Evaluating the descent direction using the condensed KKT system 

The augmented KKT system is equivalent to 

Kτ dx = −r1 + (∇hτ )⊤(Σs r4 + r2) 

with the condensed matrix K = W + (∇hτ )⊤ Σs (∇hτ ). 

→ the condensed KKT system can be solved without numerical pivoting! 
23 of 28 S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power fow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point metho 



HyKKT 

Idea: augmented Lagrangian reformulation 
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For γ > 0, the condensed KKT system is equivalent to 

Kγ ∇g⊤ dx w1 + γ∇g⊤w2= − ∇g 0 dy w2 

with Kγ = K + γ∇g⊤∇g 

For γ large-enough the matrix Kγ is positive defnite 
We can solve the condensed KKT system using the normal equations: 

(∇g)K −1(∇g)⊤dy = w2 − K −1(w1 + γ∇g⊤w2)γ γ 

• Once Kγ factorized with Cholesky, HyKKT solves the normal equations 
iteratively with a conjugate gradient (CG) algorithm 

• For large γ, CG converges in few iterations 

24 of 28 S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 
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Results on the AC-OPF problem 

Observations 

• We use the newly released cuDSS solver (sparse Cholesky) 

• Up to 10x speed-up compared to Ipopt 

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS 
Case it init lin total it init lin total it init lin total 
13659_pegase 
19402_goc 
20758_epigrids 
78484_epigrids 

63 0.45 7.21 
69 0.63 31.71 
51 0.63 14.27 

102 2.57 179.29 

10.14 
36.92 
18.21 

207.79 

75 0.83 1.05 2.96 
73 1.42 2.28 5.38 
53 1.34 1.05 3.57 

101 5.94 5.62 18.03 

62 0.84 0.93 2.47 
69 1.44 1.93 4.31 
51 1.35 1.55 3.51 

104 6.29 9.01 18.90 

Table: OPF benchmark, solved with a tolerance tol=1e-6. (A100 GPU) 
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Results on the COPS benchmark 

Observation 

• LiftedKKT and HyKKT remain competitive, but are not signifcantly 
faster on the COPS benchmark 

HSL MA57 LiftedKKT+cuDSS HyKKT+cuDSS 
n m it init lin total it init lin total it init lin total 

bearing_800 
camshape_12800 
elec_800 
gasoil_12800 
marine_12800 
pinene_12800 
robot_12800 
rocket_51200 
steering_51200 

643k 
13k 
2k 

333k 
410k 
640k 
115k 
205k 
256k 

3k 
38k 

0.8k 
333k 
410k 
640k 
77k 

154k 
205k 

13 0.94 14.59 
34 0.02 0.34 

354 2.36 337.41 
20 1.78 11.15 
11 0.36 3.51 
10 0.48 7.15 
35 0.54 4.63 
31 1.21 6.24 
27 1.40 9.74 

16.86 
0.54 

409.57 
13.65 
4.46 
8.45 
5.91 
9.51 

13.00 

14 3.31 0.18 4.10 
33 0.05 0.02 0.16 

298 2.11 2.58 24.38 
18 2.11 0.98 5.50 

146 2.80 25.04 39.24 
21 4.50 0.99 7.44 
33 1.13 0.30 4.29 
37 0.83 0.17 8.49 
15 1.82 0.19 5.41 

12 3.32 1.98 5.86 
34 0.06 0.03 0.19 

184 1.81 2.40 16.33 
22 2.99 1.21 6.47 
11 2.89 0.63 4.03 
11 4.65 3.54 9.25 
35 1.15 0.27 4.58 
30 0.87 2.67 10.11 
28 1.88 0.56 11.31 

Table: COPS benchmark , solved with a tolerance tol=1e-6 (A100 GPU) 
26 of 28 
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How expensive should be your GPU? 

Benchmarking diferent GPUs 

• A100 (80GB) HPC ($10,000) 

• A30 (24GB) workstation ($5,000 ) 

• A1000 (4GB) laptop 
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Perspective 

Summary 

Two practical methods to solve large-scale nonlinear programs on GPU: 
• Condense & Densify 

• Relax equality & condense 

Take away 

1. Large-scale optimization is practical on modern GPU hardware 

2. On some problems, we observe a x10 speed-up compared to 
state-of-the-art 

3. Exciting new developments are coming! 

28 of 28 
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