GPU-accelerated nonlinear programming

Mihai Anitescu¹ François Pacaud² Sungho Shin¹

 $^1 {\rm MCS},$ Argonne National Laboratory $^{-2} {\rm CAS},$ Mines Paris - PSL

Autonomous Systems Workshop, Golden 2024

Who are we?

An international team looking at the future of nonlinear programming

• Development of a nonlinear optimization solver: MadNLP.jl

- Winner of the 2023 COIN-OR cup!

MadNLP: a structure exploiting interior-point solver

MadNLP

- Written in pure Julia
- Filter line-search IPM (ala Ipopt)
- Flexible & Modular
- ✓ CUDA-compatible
- ✓ MPI-compatible

Open-source: https://github.com/MadNLP/MadNLP.jl/

- 1 using MadNLP, MadNLPTests
- 2 model = MadNLPTests.HS15Model()
- 3 solver = MadNLPSolver(model)
- 4 MadNLP.solve!(solver)

Why GPUs?

- End of Moore's Law

- GPUs power AI and scientific computing (fluid, climate, bioinformatics)
- The newest generation of supercomputers are using GPUs

Outline

Nonlinear programming

GPU-accelerated automatic-differentiation

GPU-accelerated KKT linear solvers

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

- Useful framework to solve practical engineering problems
- Usually, we are interested only at finding a local optimum
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

• Useful framework to solve practical engineering problems

- Usually, we are interested only at finding a local optimum
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

Interior-point method

Rewrite the (nonsmooth) KKT system as a smooth nonlinear system

Solve $F_{\mu}(x, s; y, z, \nu) = 0$ using Newton method while driving $\mu \to 0$.

Figure: ∇F_{μ}

Augmented KKT system

At iteration k, solve the Newton step $(\nabla F_{\mu})d_{k} = -F_{k}$ $\begin{bmatrix} W & 0 \nabla g^{\top} \nabla h^{\top} \\ 0 & \Sigma_{s} & 0 & I \\ \nabla g & 0 & 0 & 0 \\ \nabla h & I & 0 & 0 \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{s} \\ d_{y} \\ d_{z} \end{bmatrix} = -\begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{bmatrix}$

with $W = \nabla_{xx}^2 L(\cdot)$, $\Sigma_s = S^{-1} \text{diag}(\nu)$

Condensed KKT system

Condensed KKT system

The augmented KKT system is equivalent to

$$\begin{array}{ccc} \mathbf{K} & \nabla g^{\top} & d_{x} \\ \nabla g & 0 & d_{y} \end{array} = - \begin{array}{c} \mathbf{r}_{1} + (\nabla h)^{\top} (\Sigma_{s} \mathbf{r}_{4} + \mathbf{r}_{2}) \\ \mathbf{r}_{3} \end{array}$$

with the condensed matrix $K = W + \nabla h^{\top} \Sigma_s \nabla h$. We recover (d_s, d_z) as

$$d_s = -\Sigma_s^{-1}(r_3 + d_y), \quad d_z = \Sigma_s (\nabla h \, d_x - r_4) - r_2.$$

- Additional fill-in compared to augmented KKT system...
- Useful when the number of inequality constraints *m* is large

Identifying the computational bottlenecks

How to solve the Newton step?

$$(\nabla F_{\mu})d_{k} = -F_{k}$$

Two computational bottlenecks:

- 1. Evaluate derivatives and assemble KKT matrix ∇F_{μ}
- 2. Solve KKT system $\nabla F_{\mu}d_k = -F_k$

Outline

Nonlinear programming

 ${\sf GPU}{\text{-}}{\sf accelerated automatic-differentiation}$

GPU-accelerated KKT linear solvers

Evaluating derivatives on the GPU

Figure: Expression tree for $exp(x^2 + y^2)$ (credit: JuMP.jl)

Derivatives: Evaluate ∇F_{μ} requires Jacobian and Hessian

- Rely on automatic differentiation (AD)
- Usually we formulate the nonlinear program inside a *modeler*, computing automatically the derivatives using the expression tree
- Software: AMPL, GAMS, Pyomo, JuMP (all designed for CPU)

Challenge: evaluating sparse derivatives on the GPU

- GPU-accelerated AD frameworks already exist (Torch, Tensorflow, jax)
- But none of them have full support for sparse and second-order

ExaModels.jl: a prototype for sparse automatic differentiation on GPU

• Large-scale optimization problems almost always have repetitive patterns

$$\begin{split} \min_{x^{\flat} \le x \le x^{\sharp}} \sum_{l \in [L]} \sum_{i \in [l_{l}]} f^{(l)}(x; p_{i}^{(l)}) & (\text{SIMD abstraction}) \\ \text{subject to} \quad g^{(m)}(x; q_{j}) = \int_{j \in [J_{m}]} f^{(m)}(x; p_{k}^{(m)}) = 0, \quad \forall m \in [M] \end{split}$$

 Repeated patterns are made available by always specifying the models as iterable objects

constraint(c,
$$3 * x[i+1]^3 + 2 * sin(x[i+2])$$
 for i 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is constructed & compiled, and executed in parallel over multiple data

Observation

ExaModels.jl is effective at evaluating the derivatives of practical nonlinear problems (e.g. optimal power flow)

Outline

Nonlinear programming

GPU-accelerated automatic-differentiation

GPU-accelerated KKT linear solvers

Solving the KKT system on the GPU

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system $\nabla F_{\mu}d_k = -F_k$

- Usually require factorizing ∇F_{μ} (convex: Cholesky, nonconvex: LBL)
- KKT system is highly *ill-conditioned* \rightarrow numerical pivoting
- Software: HSL, Pardiso

Challenge: solving the sparse linear system on the GPU

- Ill-conditioning of the KKT system: iterative solvers are often not practical
- Direct solver requires numerical pivoting for numerical stability, an operation difficult to parallelize

Roadmap

Solution 1: Densification

- Reduce the KKT system down to a dense matrix
- Akin to a null-space method (also known as reduced Hessian)
- Works well if the number of degrees of freedom is small

Solution 2: Condensation

- Reduce the KKT system to a sparse positive definite matrix
- Sparse Cholesky is stable without numerical pivoting
 → runs in parallel on the GPU (cuDSS)
- More versatile approach

Solution 1: Densification

- Split the decision variables into independent (=control) and dependent variables (=states)
- Reduce the KKT system to a dense matrix by eliminating the state variables

Problem with a physical structure

• *u*: control (=degrees of freedom)

m

• x: state

Physical cons.

$$\min_{x,u} f(x,u) \quad \text{s.t.} \quad \begin{cases} g(x,u) = 0 \\ h(x,u) \le 0 \\ \end{cases}$$

Null-space strategy

We can exploit the structure in the condensed KKT system (=split x from u)

$$\begin{bmatrix} K_{uu} & K_{ux} & G_u^\top \\ K_{xu} & K_{xx} & G_x^\top \\ G_u & G_x & 0 \end{bmatrix} \begin{bmatrix} d_u \\ d_x \\ d_y \end{bmatrix} = - \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

Reduced KKT system

If the Jacobian G_x is *invertible*, then the condensed KKT system is equivalent to

$$\hat{K}_{uu} d_u = -r_1 + G_u^\top G_x^{-\top} r_2 + K_{ux} G_x^{-1} r_3$$

The reduced matrix $\hat{K}_{uu} \in \mathbb{R}^{n_u \times n_u}$ is *dense* and satisfies

$$\hat{\boldsymbol{K}}_{uu} = \begin{array}{c} \boldsymbol{I} \\ -\boldsymbol{G}_{x}^{-1}\boldsymbol{G}_{u} \end{array}^{\top} \begin{array}{c} \boldsymbol{K}_{uu} & \boldsymbol{K}_{ux} \\ \boldsymbol{K}_{xu} & \boldsymbol{K}_{xx} \end{array} \begin{array}{c} \boldsymbol{I} \\ -\boldsymbol{G}_{x}^{-1}\boldsymbol{G}_{u} \end{array}$$

 \rightarrow the reduction runs efficiently in parallel on the GPU

F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023) of

Application to the optimal power flow

The problem has a graph structure we can exploit:

- *u*: power generations
- x: voltage magnitudes and angles

Structure is explicit!

Numerical results on large-scale OPF instances

Observations

- The performance depends on the number of controls in the problem (the less, the better)
- Results on the AC OPF problem: the reduction gives better results than SOTA if ratio <7%

F. Pacaud, S. Shin, M. Schanen, DA. Maldonado, M. Anitescu. "Accelerating condensed interior-point methods on SIMD/GPU architectures." JOTA (2023) of 28

Security-constrained optimal power flow

- *N* scenarios, with *one coupling* **u** (power generations)
- One recourse per scenario: states x₁, · · · , x_N

Stochastic optimal power flow

$$\min_{x_i,u} \sum_{i} f_i(x_i, u)$$
s.t.
$$g_i(x_i, u) = 0 \quad \forall i = 1, \cdots, N$$

$$h_i(x_i, u) \le 0 \quad \forall i = 1, \cdots, N$$

Line flow constraints

Fact

The condensed KKT system has a block-arrowhead structure

$$\boldsymbol{K} = \boldsymbol{W} + \nabla \boldsymbol{h}^{\top} \boldsymbol{\Sigma}_{\boldsymbol{s}} \nabla \boldsymbol{h} = \begin{bmatrix} \boldsymbol{K}_{\boldsymbol{x}_{1}\boldsymbol{x}_{1}} & \boldsymbol{K}_{\boldsymbol{x}_{1}\boldsymbol{u}} \\ \ddots & \vdots \\ \boldsymbol{K}_{\boldsymbol{x}_{N}} & \ddots & \boldsymbol{K}_{\boldsymbol{u}\boldsymbol{u}} \end{bmatrix}$$

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

Figure: The 2000s: frontal solve using sparse LDL factorization (HSL)

F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU A21.6728

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

Figure: The 2010s: Schur with incomplete augmented factorization (Pardiso)

F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU A21.6728

Running a nonlinear solver on multiple GPUs with CUDA-MPI

Solution

Nested reduction using hierarchical Schur complement on multiple GPUs

Apply directly to the solution of two-stage nonlinear programs

Figure: The 2020s: Schur complement with multiple RHS on GPUs

F. Pacaud, M. Schanen, S. Shin, DA. Maldonado, M. Anitescu. "Parallel Interior-Point Solver for Block-Structured Nonlinear Programs on SIMD/GPU A21.6728

Solution 2: Condensation of the linear system

We look again at the condensed KKT system:

$$\frac{K}{\nabla g} \frac{\nabla g^{\top}}{0} \quad \frac{d_x}{d_y} = - \frac{w_1}{w_2}$$

with the condensed matrix $K = W + \nabla h^{\top} \Sigma_s \nabla h$.

 \rightarrow Two strategies to reduce it down to a positive definite matrix:

- 1. LiftedKKT
- 2. HyKKT

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point me S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)

LiftedKKT

Idea: equality relaxation

For a au > 0 small enough, solve the relaxed problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $egin{array}{c} |g(x)| \leq au \ h(x) \leq 0 \end{array}$

Reformulating the problem with slack variables:

$$\min_{x\in\mathbb{R}^n,s\in\mathbb{R}^{m+p}} f(x)$$
 subject to $h^{ au}(x)+s=0$, $s\geq 0$

with $h^{\tau}(x) = (|g(x)| - \tau, h(x))$

Evaluating the descent direction using the condensed KKT system

The augmented KKT system is equivalent to

$$\mathbf{K}_{\tau} \mathbf{d}_{x} = -\mathbf{r}_{1} + (\nabla h^{\tau})^{\top} (\Sigma_{s} \mathbf{r}_{4} + \mathbf{r}_{2})$$

with the condensed matrix $K = W + (\nabla h^{\tau})^{\top} \Sigma_{s} (\nabla h^{\tau})$.

 \rightarrow the condensed KKT system can be solved without numerical pivoting!

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point me

HyKKT

Idea: augmented Lagrangian reformulation

For $\gamma >$ 0, the condensed KKT system is equivalent to

$$egin{array}{ccc} \mathcal{K}_\gamma &
abla g^{ op} & d_x \
abla g & 0 & d_y \end{array} = - egin{array}{ccc} w_1 + \gamma
abla g^{ op} w_2 \ w_2 \end{array}$$

with $K_{\gamma} = K + \gamma \nabla g^{\top} \nabla g$

For γ large-enough the matrix K_{γ} is positive definite We can solve the condensed KKT system using the normal equations:

$$(\nabla g) \mathcal{K}_{\gamma}^{-1} (\nabla g)^{\top} d_{y} = w_{2} - \mathcal{K}_{\gamma}^{-1} (w_{1} + \gamma \nabla g^{\top} w_{2})$$

• Once K_{γ} factorized with Cholesky, HyKKT solves the normal equations iteratively with a conjugate gradient (CG) algorithm

24 of 28

• For large γ , CG converges in few iterations

Results on the AC-OPF problem

Observations

- We use the newly released cuDSS solver (sparse Cholesky)
- Up to 10x speed-up compared to lpopt

		HS	L MA27		Li	ftedKK	T+cul	DSS	HyKKT+cuDSS				
Case	it	init	lin	total	it	init	lin	total	it	init	lin	total	
13659_pegase	63	0.45	7.21	10.14	75	0.83	1.05	2.96	62	0.84	0.93	2.47	
19402_goc	69	0.63	31.71	36.92	73	1.42	2.28	5.38	69	1.44	1.93	4.31	
20758_epigrids	51	0.63	14.27	18.21	53	1.34	1.05	3.57	51	1.35	1.55	3.51	
78484_epigrids	102	2.57	179.29	207.79	101	5.94	5.62	18.03	104	6.29	9.01	18.90	

Table: OPF benchmark, solved with a tolerance tol=1e-6. (A100 GPU)

Results on the COPS benchmark

Observation

 LiftedKKT and HyKKT remain competitive, but are not significantly faster on the COPS benchmark

			HSL MA57				LiftedKKT+cuDSS				HyKKT+cuDSS			
	n	т	it	init	lin	total	it	init	lin	total	it	init	lin	total
bearing_800	643k	3k	13	0.94	14.59	16.86	14	3.31	0.18	4.10	12	3.32	1.98	5.86
camshape_12800	13k	38k	34	0.02	0.34	0.54	33	0.05	0.02	0.16	34	0.06	0.03	0.19
elec_800	2k	0.8k	354	2.36	337.41	409.57	298	2.11	2.58	24.38	184	1.81	2.40	16.33
gasoil_12800	333k	333k	20	1.78	11.15	13.65	18	2.11	0.98	5.50	22	2.99	1.21	6.47
marine_12800	410k	410k	11	0.36	3.51	4.46	146	2.80	25.04	39.24	11	2.89	0.63	4.03
pinene_12800	640k	640k	10	0.48	7.15	8.45	21	4.50	0.99	7.44	11	4.65	3.54	9.25
robot_12800	115k	77k	35	0.54	4.63	5.91	33	1.13	0.30	4.29	35	1.15	0.27	4.58
rocket_51200	205k	154k	31	1.21	6.24	9.51	37	0.83	0.17	8.49	30	0.87	2.67	10.11
steering_51200	256k	205k	27	1.40	9.74	13.00	15	1.82	0.19	5.41	28	1.88	0.56	11.31

Table: COPS benchmark , solved with a tolerance tol=1e-6 (A100 GPU)

How expensive should be your GPU?

Benchmarking different GPUs

- A100 (80GB)
- A30 (24GB)
- A1000 (4GB)

HPC (\$10,000) workstation (\$5,000) laptop

Perspective

Summary

Two practical methods to solve large-scale nonlinear programs on GPU:

- Condense & Densify
- Relax equality & condense

Take away

- 1. Large-scale optimization is practical on modern GPU hardware
- 2. On some problems, we observe a $\mathbf{x10}$ speed-up compared to state-of-the-art
- 3. Exciting new developments are coming!