Resource-Aware Network Optimization in Autonomous Energy Grids

Jorge Cortés

Mechanical and Aerospace Engineering University of California, San Diego http://carmenere.ucsd.edu/jorge

Virtual Workshop on Resilient Autonomous Energy Systems National Renewable Energy Laboratory

September 8-9, 2021

Joint w/:

Priyank Srivastava Guido Cavraro

Complex Cyberphysical Systems

We live in an interconnected world

environmental sensing

industrial internet

energy grids

Google Loon

connected vehicles

loΤ

Tight coupling between physical and cyber processes:

convergence of control, communication, computing, storage, sampling, signal processing, estimation, interaction with humans

Need for efficient use of available resources

Resource-Aware Control and Coordination

Continuous or periodic implementation paradigm

- costly-to-implement synchronization for information sharing, processing, decision making
- 'passive' asynchronism, fixed agent time schedules
- inefficient implementations for processor usage, communication bandwidth, energy

Resource-Aware Control and Coordination

Continuous or periodic implementation paradigm

- costly-to-implement synchronization for information sharing, processing, decision making
- 'passive' asynchronism, fixed agent time schedules
- inefficient implementations for processor usage, communication bandwidth, energy

Opportunistic state-triggered paradigm

- trade-offs: comp, comm, sensing, control
- identify criteria to autonomously trigger actions based on task – 'active' asynchronism
- efficient implementations, incorporates uncertainty

A Movie is Worth a Thousand Words

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

By ensuring $\dot{V} = \nabla V(x) \cdot f(x, k(\bar{x})) < 0$

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

$$\begin{split} \dot{V} &= \nabla V(x) \cdot f(x, k(\bar{x})) \\ &= \nabla V(x) \cdot f(x, k(x)) + \nabla V(x) \cdot (f(x, k(\bar{x})) - f(x, k(x))) \end{split}$$

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

$$\begin{split} \dot{V} &= \nabla V(x) \cdot f(x, k(\bar{x})) \\ &\leq \nabla V(x) \cdot f(x, k(x)) + h(x) \, \|\bar{x} - x\| \leq 0 \end{split}$$

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium: $\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium:
$$\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$$

Insights

• feasibility: rule out accumulation of trigger times

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium:
$$\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$$

- feasibility: rule out accumulation of trigger times
- ensures stability, but how about guarantees on performance?

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium:
$$\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$$

- feasibility: rule out accumulation of trigger times
- ensures stability, but how about guarantees on performance?
- trigger evaluation: computable with available information

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium:
$$\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$$

- feasibility: rule out accumulation of trigger times
- ensures stability, but how about guarantees on performance?
- trigger evaluation: computable with available information
- inherently aperiodic: active asynchronism

Simplified setup: system $\dot{x} = f(x, u)$ on \mathbb{R}^n with stabilization via

• controller: $k : \mathbb{R}^n \to \mathbb{R}^m$ • certificate: Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}$ $\dot{V} = \nabla V(x) \cdot f(x, k(x)) < 0$

Synthesis for $\dot{x} = f(x, k(\bar{x}))$? (w/ \bar{x} constructed from sampled information of x)

Trigger criterium:
$$\|\bar{x} - x\| \leq \frac{-\nabla V(x) \cdot f(x, k(x))}{h(x)}$$

- feasibility: rule out accumulation of trigger times
- ensures stability, but how about guarantees on performance?
- trigger evaluation: computable with available information
- inherently aperiodic: active asynchronism
- what is resource to be aware of?

What is the 'Resource' to Be Aware of?

Started off with actuator updates for stabilization, expanded to whole plant-sensor-actuator-controller model

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007
W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered and self-triggered control. In IEEE Conf. on Decision and Control, pages 3270–3285, Maui, HI, 2012

What is the 'Resource' to Be Aware of?

Started off with actuator updates for stabilization, expanded to whole plant-sensor-actuator-controller model

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. *IEEE Transactions on Automatic Control*, 52(9):1680–1685, 2007
W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered and self-triggered control. In *IEEE Conf. on Decision and Control*, pages 3270–3285, Maii, HI, 2012

Increasingly richer notions of 'resource'

- communication among individual agents to achieve collective task
- understanding stabilization under information constraints
- actuator updates for safety-critical systems
- costly recomputation of optimal policy
- re-sampling system state in accelerated optimization
- requesting information from a human

Today: Resource-Aware Network Optimization

Specific challenges:

- feasibility: emergence of Zeno behavior b/c of availability of partial information to agents
- trigger evaluation: solution of optimization problem is not known a priori!
- trigger evaluation: criterion for individual agents computable with locally available information

Agent-supervisor coordination strategy

decentralized, opportunistic, guarantees anytime feasibility and asymptotic convergence to optimizer

Problem Formulation

 $\min_{x \in \mathcal{X}} \sum_{i=1}^{n} f_i(x_i) + g(x)$

Problem data

- f_i : local cost function of agent *i*, depends on its own state
- g: coupling cost function, depends on network state
- $\mathcal{X} = \prod_{i=1}^{n} \mathcal{X}_i$: separable constraint set

Problem Formulation

Problem data

- f_i: local cost function of agent i, depends on its own state
- g: coupling cost function, depends on network state
- $\mathcal{X} = \prod_{i=1}^{n} \mathcal{X}_i$: separable constraint set

Communication: agents rely on supervisor to obtain information about coupling cost

Prosumer-Based Distribution Network

Prosumer-Based Distribution Network

Event-Triggered Agent-Supervisor Coordination

Network optimization

$$\min_{i\in\mathcal{X}} \quad \sum_{i=1}^n f_i(x_i) + g(x)$$

• Without coupling cost g, each agent simply would solve $\min_{x_i \in \mathcal{X}_i} f_i(x_i)$

• Presence of g couples agents' decisions, requiring continuous or periodic agent-supervisor communication

Goal: endow agents with locally evaluable criterion to opportunistically decide when to request information

Gradient descent

$$\dot{x}_i = -\underbrace{\nabla_i f_i(x_i)}_{\text{agent}} - \underbrace{\nabla_i g(x)}_{\text{supervisor}}, \quad i \in \{1, \dots, n\}$$

Jorge Cortes

Gradient descent

$$\dot{x}_i = -\underbrace{\nabla_i f_i(x_i)}_{\text{agent}} - \underbrace{\nabla_i g(x)}_{\text{supervisor}}, \quad i \in \{1, \dots, n\}$$

Requires supervisor to provide information continuously!

Gradient descent

$$\dot{x}_i = -\underbrace{\nabla_i f_i(x_i)}_{\text{agent}} - \underbrace{\nabla_i g(x)}_{\text{supervisor}}, \quad i \in \{1, \dots, n\}$$

Requires supervisor to provide information continuously!

Opportunistic implementation

$$\dot{x}_i = -\underbrace{
abla_i f_i(x_i)}_{ ext{agent}} - \underbrace{
abla_i g(x(t_k))}_{ ext{supervisor}}$$

Requires supervisor to provide information at triggering times $\{t_k\}_{k=0}^{\infty}$

Gradient descent

$$\dot{x}_i = -\underbrace{\nabla_i f_i(x_i)}_{\text{agent}} - \underbrace{\nabla_i g(x)}_{\text{supervisor}}, \quad i \in \{1, \dots, n\}$$

Requires supervisor to provide information continuously!

Opportunistic implementation

$$\dot{x}_i = -\underbrace{
abla_i f_i(x_i)}_{ ext{agent}} - \underbrace{
abla_i g(x(t_k))}_{ ext{supervisor}}$$

Requires supervisor to provide information at triggering times $\{t_k\}_{k=0}^{\infty}$

How to determine $\{t_k\}_{k=0}^{\infty}$ in a decentralized fashion and ensure convergence?

• each agent $i \in \{1, ..., n\}$ evaluates $t_{k+1}^{i} = \min \{t > t_{k} \mid L_{g}|x_{i} - x_{i}(t_{k})| = \sigma |\nabla_{i}f_{i}(x_{i}) + \nabla_{i}g(x(t_{k}))|\}$ (L_{g} Lipschitz constant of ∇_{g} and $\sigma \in (0, 1)$ design parameter) • whoever finds smallest time, determines triggering time $t_{k+1} = \min_{i \in \{1,...,n\}} t_{k+1}^{i}$

③ supervisor provides information to compute $abla_i g(x(t_{k+1}))$ to each $i \in \{1, \dots, n\}$

Objective Function is Motonically Decreasing

 $V(x) = f(x) + g(x) - f(x^*) - g(x^*)$ is monotonically decreasing along $\cup_{k=0}^{\infty} [t_k, t_{k+1}]$

Objective Function is Motonically Decreasing

 $V(x) = f(x) + g(x) - f(x^*) - g(x^*)$ is monotonically decreasing along $\cup_{k=0}^{\infty} [t_k, t_{k+1}]$

Proof follows from
$$\dot{V} \leq - \|\dot{x}\|^2 \left(1 - \frac{\|\nabla g(x) - \nabla g(x(t_k))\|}{\|\dot{x}\|}\right)$$

Minimum Inter-Event Time and Convergence to Optimizer

There exists $\tau > 0$ such that $t_{k+1} - t_k \ge \tau$ for all k, and any trajectory of opportunistic implementation converges to optimizer

Minimum Inter-Event Time and Convergence to Optimizer

There exists $\tau > 0$ such that $t_{k+1} - t_k \ge \tau$ for all k, and any trajectory of opportunistic implementation converges to optimizer

Proof relies on lower-bounding time it takes state estimation error to reach triggering threshold

Optimization via Continuous Projected Dynamics

Continuous projected dynamics

$$\dot{x} = \Pi_{\mathcal{X}}(x - \lambda(\nabla f(x) + \nabla g(x))) - x$$

where $\lambda > 0$ is design parameter

Optimization via Continuous Projected Dynamics

Continuous projected dynamics

$$\dot{x} = \Pi_{\mathcal{X}}(x - \lambda(\nabla f(x) + \nabla g(x))) - x$$

where $\lambda > 0$ is design parameter

Optimization via Continuous Projected Dynamics

Continuous projected dynamics

$$\dot{x} = \Pi_{\mathcal{X}}(x - \lambda(\nabla f(x) + \nabla g(x))) - x$$

where $\lambda > 0$ is design parameter

Optimization via Continuous Projected Dynamics

Continuous projected dynamics

$$\dot{x} = \Pi_{\mathcal{X}}(x - \lambda(\nabla f(x) + \nabla g(x))) - x$$

where $\lambda > 0$ is design parameter

If f + g has Lipschitz gradient,

- feasible set is forward invariant and attractive
- dynamics converges to optimizer

Optimization via Continuous Projected Dynamics

Continuous projected dynamics

$$\dot{x} = \Pi_{\mathcal{X}}(x - \lambda(\nabla f(x) + \nabla g(x))) - x$$

where $\lambda > 0$ is design parameter

If f + g has Lipschitz gradient,

- feasible set is forward invariant and attractive
- dynamics converges to optimizer

Opportunistic implementation

$$\dot{x}_i = \prod_{\mathcal{X}_i} (x_i - \lambda(\nabla_{x_i} f_i(x_i) + \underbrace{\nabla_{x_i} g(x(t_k)))}) - x_i$$

supervisor

Objective Function is Motonically Decreasing

 $V(x) = f(x) + g(x) - f(x^*) - g(x^*)$ is monotonically decreasing along $\cup_{k=0}^{\infty} [t_k, t_{k+1}]$

Minimum Inter-Event Time and Convergence to Optimizer

For $\lambda < 1/H$, there exists $\tau > 0$ such that $t_{k+1} - t_k \ge \tau$ for all k, and any trajectory of opportunistic implementation converges to optimizer

$$H = \max_{i \in \{1, \dots, n\}} \max_{x_i \in \mathcal{X}_i} \nabla_{x_i}^2 f_i(x_i)$$

Minimum Inter-Event Time and Convergence to Optimizer

For $\lambda < 1/H$, there exists $\tau > 0$ such that $t_{k+1} - t_k \ge \tau$ for all k, and any trajectory of opportunistic implementation converges to optimizer

$$H = \max_{i \in \{1, \dots, n\}} \max_{x_i \in \mathcal{X}_i} \nabla_{x_i}^2 f_i(x_i)$$

Proof uses nonsmooth analysis to lower-bound time it takes state estimation error to reach threshold

Simulations on IEEE 37-Bus Test Feeder

Minimizing generation cost in prosumer-based distribution network

red nodes are generators, node 0 is supervisor

Simulations on IEEE 37-Bus Test Feeder

Minimizing generation cost in prosumer-based distribution network

red nodes are generators, node 0 is supervisor

Summary

Resource-aware control and coordination

rich paradigm for real-time implementation of cyberphysical systems

Outlook

- trigger design: performance vs efficiency vs implementability
- trigger evaluation: synthesis of distributed triggers, adaptive budgets
- distributed asynchronism
- resource understood broadly
- elaborate uses of sampling information

P. Srivastava, G. Cavraro, and J. Cortés. Agent-supervisor coordination for decentralized event-triggered optimization. IEEE Control Systems Letters, 2021. Submitted

Resource-Aware Network Optimization in Autonomous

DERConnect

NSF User Facility for Control of Distributed Energy Resources

Testbed for distributed controls

- 2,5K controlled devices
- 30K metered devices
- 2M simulated nodes
- remote access nationally

Beyond: cybersecurity, building operations, human-cyber-physical systems

Help Us Shape It

Call for feedback from research community:

- types of tests you envision?
- capabilities in terms of communication, sensing, control, and actuation?
- ability to determine test conditions¶meters, templates, tools, libraries
- resolution, granularity, data access and availability during&after tests

Help Us Shape It

Call for feedback from research community:

- types of tests you envision?
- capabilities in terms of communication, sensing, control, and actuation?
- ability to determine test conditions¶meters, templates, tools, libraries
- resolution, granularity, data access and availability during&after tests

Opportunity to shape capabilities&functionality of DERConnect

Current **live document** outlines 4 high-level skeletons of envisioned test cases

Skeleton 1 – Fully Distributed Actuation

Skeleton 1 describes fully distributed algorithms in which individual nodes communicate with neighbors to solve an optimization or control problem. These algorithms typically involve a mix of local calculations and updates between neighboring DERs. Examples are ARPA-e teams 4 and

https://sites.google.com/ucsd.edu/derconnect