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´ Energy Grids

Complex Cyberphysical Systems 

We live in an interconnected world 

environmental sensing industrial internet energy grids 

connected vehicles IoT Google Loon 

Tight coupling between physical and cyber processes: 

convergence of control, communication, computing, storage, sampling, signal 
processing, estimation, interaction with humans 

Need for efficient use of available resources 
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Opportunistic state-triggered paradigm

trade-offs: comp, comm, sensing, control

identify criteria to autonomously trigger actions
based on task – ‘active’ asynchronism

efficient implementations, incorporates uncertainty

´ Energy Grids

Resource-Aware Control and Coordination 

Continuous or periodic implementation paradigm 

costly-to-implement synchronization for information 
sharing, processing, decision making 

‘passive’ asynchronism, fixed agent time schedules 

inefficient implementations for processor usage, 
communication bandwidth, energy 

Time

Agents

Time

Certificate
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´ Energy Grids

A Movie is Worth a Thousand Words 
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Synthesis for ẋ = f (x , k(x̄))? (w/ x̄ constructed from sampled information of x)

Insights

feasibility: rule out accumulation of trigger times

ensures stability, but how about guarantees on performance?

trigger evaluation: computable with available information

inherently aperiodic: active asynchronism

what is resource to be aware of?

´ Energy Grids

How to Decide When to Update? 

Simplified setup: system ẋ = f (x , u) on Rn with stabilization via ) 
controller: k : Rn → Rm 

V̇ = rV (x) · f (x , k(x)) < 0 
certificate: Lyapunov function V : Rn → R 
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Synthesis for ẋ = f (x , k(x̄))? (w/ x̄  constructed from sampled information of x) 

Trigger criterium: kx̄  − xk ≤ −rV (x
h 
)
( 
· 
x
f 
)
(x,k(x)) 

Insights 

feasibility: rule out accumulation of trigger times 

ensures stability, but how about guarantees on performance? 

trigger evaluation: computable with available information 

inherently aperiodic: active asynchronism 

Jorge Cortes Resource-Aware Network Optimization in Autonomous September 8, 2021 5 / 18 



´ Energy Grids

How to Decide When to Update? 
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Increasingly richer notions of ‘resource’

communication among individual agents to achieve collective task

understanding stabilization under information constraints

actuator updates for safety-critical systems

costly recomputation of optimal policy

re-sampling system state in accelerated optimization

requesting information from a human

´ Energy Grids

What is the ‘Resource’ to Be Aware of? 

Started off with actuator updates for stabilization, expanded to whole 
plant-sensor-actuator-controller model 
P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 52(9):1680–1685, 2007 
W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada. An introduction to event-triggered and self-triggered control. In IEEE Conf. on Decision and 
Control, pages 3270–3285, Maui, HI, 2012 
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´ Energy Grids

Today: Resource-Aware Network Optimization 

Specific challenges: 

feasibility: emergence of Zeno behavior b/c of availability 
of partial information to agents 

trigger evaluation: solution of optimization problem is not 
known a priori! 

trigger evaluation: criterion for individual agents 
computable with locally available information 

Agent-supervisor coordination strategy 

decentralized, opportunistic, guarantees anytime feasibility and asymptotic 
convergence to optimizer 

Jorge Cortes Resource-Aware Network Optimization in Autonomous September 8, 2021 7 / 18 



Communication: agents rely on supervisor to obtain information about coupling cost

´ Energy Grids

Problem Formulation 

nX 
min fi (xi ) + g (x) 
x∈X 

i=1 

Problem data 

fi : local cost function of agent i , depends on its own state 

g : coupling cost function, depends on network state 
nQ

X = Xi : separable constraint set 
i=1 
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´ Energy Grids

Prosumer-Based Distribution Network 

prosumers: internal generation cost 

substation: power exchange cost w/ grid 

1 

2 

3 4 

5 

Network 
Supervisor 
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´ Energy Grids

Event-Triggered Agent-Supervisor Coordination 

Network optimization 

nX 
min 
x∈X 

fi (xi ) + g(x) 
i=1 

Without coupling cost g , each agent simply would solve minxi ∈Xi fi (xi ) 

Presence of g couples agents’ decisions, requiring continuous or periodic 
agent-supervisor communication 

Goal: endow agents with locally evaluable criterion to opportunistically decide 
when to request information 
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Requires supervisor to provide information continuously!

Opportunistic implementation

ẋi = −ri fi (xi )| {z }
agent

−rig(x(tk))| {z }
supervisor

Requires supervisor to provide information at triggering times {tk}∞k=0

How to determine {tk}∞k=0 in a decentralized fashion and ensure convergence?

´ Energy Grids

Unconstrained Case 

Gradient descent 

ẋi = −ri fi (xi ) − ri g(x) , i ∈ {1, . . . , n}| {z } | {z } 
agent supervisor 
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´ Energy Grids

Decentralized Event-Triggered Coordination 

1 

2 

3 

each agent i ∈ {1, . . . , n} evaluates 

tk
i 
+1 = min {t > tk | Lg |xi − xi (tk )| = σ|ri fi (xi ) + ri g(x(tk ))|} 

(Lg Lipschitz constant of rg and σ ∈ (0, 1) design parameter) 

whoever finds smallest time, determines triggering time 

tk+1 = min tk
i 
+1 

i∈{1,...,n} 

supervisor provides information to compute ri g(x(tk+1)) to each i ∈ {1, . . . , n} 
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V (x) = f (x) + g(x) − f (x ∗ ) − g(x ∗ ) is monotonically decreasing along ∪∞ 

k=0[tk , tk+1] 

� � 
1 − krg(x)−rg (x(tk ))k˙ xk2Proof follows from V ≤ −k ̇  kẋ k 
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i 
+1 = min {t > tk | Lg |xi − xi (tk )| = σ|ri fi (xi ) + ri g(x(tk ))|} 

(Lg Lipschitz constant of rg and σ ∈ (0, 1) design parameter) 

whoever finds smallest time, determines triggering time 

tk+1 = min tk
i 
+1 

i∈{1,...,n} 

supervisor provides information to compute ri g(x(tk+1)) to each i ∈ {1, . . . , n} 

Minimum Inter-Event Time and Convergence to Optimizer 
There exists τ > 0 such that tk+1 − tk ≥ τ for all k, and any trajectory of opportunistic 
implementation converges to optimizer 

Proof relies on lower-bounding time it takes state estimation error to reach triggering 
threshold 
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If f + g has Lipschitz gradient,

feasible set is forward invariant and attractive

dynamics converges to optimizer

Opportunistic implementation

ẋi = ΠXi (xi − λ(rxi fi (xi ) +rxi g(x(tk)))| {z }
supervisor

)− xi

´ Energy Grids

Constrained Case 
Optimization via Continuous Projected Dynamics 

Continuous projected dynamics 

ẋ = ΠX (x − λ(rf (x) + rg (x))) − x 

where λ > 0 is design parameter 
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ẋi = ΠXi (xi − λ(rxi fi (xi ) +rxi g(x(tk)))| {z }
supervisor

)− xi

´ Energy Grids

Constrained Case 
Optimization via Continuous Projected Dynamics 

Continuous projected dynamics 
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´ Energy Grids

Decentralized Event-Triggered Coordination 

1 

2 

3 

each agent i ∈ {1, . . . , n} evaluates n o 
i | λ¯ ktk+1 = min t > tk Lg |xi − xi | = σ|ΠXi (xi − λ(rxi fi (xi ) + rxi g(x(tk )))) − xi | 

(L̄ g Lipschitz constant of rg over X and σ ∈ (0, 1) design parameter) 

whoever finds smallest time, determines triggering time 

itk+1 = min tk+1 
i∈{1,...,n} 

supervisor provides information to compute ri g(x(tk+1)) to each i ∈ {1, . . . , n} 
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(L̄ g Lipschitz constant of rg over X and σ ∈ (0, 1) design parameter) 

whoever finds smallest time, determines triggering time 

itk+1 = min tk+1 
i∈{1,...,n} 

supervisor provides information to compute ri g(x(tk+1)) to each i ∈ {1, . . . , n} 

Minimum Inter-Event Time and Convergence to Optimizer 
For λ < 1/H, there exists τ > 0 such that tk+1 − tk ≥ τ for all k, and any trajectory of 
opportunistic implementation converges to optimizer 

H = maxi∈{1,...,n} maxxi ∈Xi 
r 2 

xi 
fi (xi ) 

Jorge Cortes Resource-Aware Network Optimization in Autonomous September 8, 2021 14 / 18 



´ Energy Grids

Decentralized Event-Triggered Coordination 

1 

2 

3 

each agent i ∈ {1, . . . , n} evaluates n o 
i | λ¯ ktk+1 = min t > tk Lg |xi − xi | = σ|ΠXi (xi − λ(rxi fi (xi ) + rxi g(x(tk )))) − xi | 

(L̄ g Lipschitz constant of rg over X and σ ∈ (0, 1) design parameter) 

whoever finds smallest time, determines triggering time 

itk+1 = min tk+1 
i∈{1,...,n} 

supervisor provides information to compute ri g(x(tk+1)) to each i ∈ {1, . . . , n} 

Minimum Inter-Event Time and Convergence to Optimizer 
For λ < 1/H, there exists τ > 0 such that tk+1 − tk ≥ τ for all k, and any trajectory of 
opportunistic implementation converges to optimizer 

H = maxi∈{1,...,n} maxxi ∈Xi 
r 2 

xi 
fi (xi ) 

Proof uses nonsmooth analysis to lower-bound time it takes state estimation error to reach 
threshold 
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´ Energy Grids

Simulations on IEEE 37-Bus Test Feeder 

Minimizing generation cost in prosumer-based distribution network 

5X 
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´ Energy Grids

Summary 

Resource-aware control and coordination 

rich paradigm for real-time implementation of cyberphysical systems 

Outlook 

trigger design: performance vs efficiency vs implementability 

trigger evaluation: synthesis of distributed triggers, adaptive budgets 

distributed asynchronism 

resource understood broadly 

elaborate uses of sampling information 

P. Srivastava, G. Cavraro, and J. Cortés. Agent-supervisor coordination for decentralized event-triggered optimization. IEEE Control Systems Letters, 2021. 
Submitted 
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´ Energy Grids

DERConnect 
NSF User Facility for Control of Distributed Energy Resources 

Testbed for distributed 
controls 

2,5K controlled 
devices 

30K metered devices 

2M simulated nodes 

remote access 
nationally 

Beyond: cybersecurity, 
building operations, 
human-cyber-physical 
systems 
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Opportunity to shape capabilities&functionality
of DERConnect

Current live document outlines 4 high-level
skeletons of envisioned test cases

https://sites.google.com/ucsd.edu/derconnect

´ Energy Grids

Help Us Shape It 

Call for feedback from research community: 

types of tests you envision? 

capabilities in terms of communication, sensing, control, and actuation? 

ability to determine test conditions&parameters, templates, tools, libraries 

resolution, granularity, data access and availability during&after tests 
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