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Introduction

« Context: develop a PHIL infrastructure at IREQ

« Enabling elements: 25 kV distribution test line and commercial real time simulation software HYPERSIM

« Majority of elements are designed and developed at IREQ — more flexibility and better
performance

« Several R&D challenges associated with such an approach:
» Hardware design and optimization
* Inverter control design
» PHIL interface design
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Inverter topology

« 25-kV 3-phase power amplifier
16 cascaded H-bridges per phase connected in series

« Each H-bridge is powered by an isolated 3-phase two-level AC-DC grid-connected inverter
(Active Front End, AFE)

« 2-kV, 167-kVA module — AFE (including output filter) with associated DC link and H-bridge
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Inverter topology
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Transformerless AC output — allows for DC and
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AFE control design challenge

» AFE control objective: tight regulation of DC link voltage (2 kV) — requires aggressive
controller

« Each module performs AC-DC-AC conversion between 3-phase and single-phase system -
> pulsating power and DC link voltage ripple with 2xf,

lDgrid { Vnc ;: i i i i Pload
F@_W %[\);TL —_ _|G

AFE H-bridge

« Aggressive DC voltage control reacts to DC voltage ripple -> grid output current distortion

* fic can change — applying filters is difficult
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AFE control design challenge

« How to ensure fast DC link voltage regulation without distorting grid current for various
frequencies of the synthesized AC voltage?
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Proposed solution

Allow for the DC link voltage ripple, but reduce the amplitude by oversizing the DC link
capacitor

For 60 Hz the resulting ripple amplitude is less than 1% of the nominal DC voltage

Controller architecture: gain scheduling full state feedback control
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Proposed solution

« Gain scheduling
» Two sets of voltage regulator gains for fast and slow control

 Fast control objective: quickly bring DC link voltage within the specified bandwidth (1%) during transient (tolerate grid
current distortion)

» Slow control objective: minimize the grid current distortion in steady state
» Scheduling variable - DC link voltage (may change fast and is not generally constant in steady state)
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Proposed solution

 Full state feedback

« Simple formulation as an optimal control problem (minimize closed loop system norms)

« Semidefinite Programming program (SDP) formulation — convex problem with a linear objective and Linear Matrix
Inequality (LMI) constraints: numerically tractable

 Allows for a straightforward bumpless transfer strategy
» Requires an appropriate model for controller design

* Inner current/outer voltage control loops

« Allows for limiting the grid current
« Sequential design (a series of convex problems to solve)
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Model development

« Available measurements: transformer secondary voltage, DC link voltage and AC output
filter current

* Full state feedback requires a model for which available measurements are states (or
states can be easily deduced)

« Third order model comprising dg-frame RL filter current dynamics and DC link voltage

* For robust tracking, augment the model with the integrals of states we want to track
(currents and voltages)
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Model development

 Perform change of variables to introduce state deviations

 Assumptions

* Inverter is lossless

* Ignore output filter capacitor

* Ignore PLL and abc-to-dq transformation
* Ignore anti-aliasing filter (AAF)

* Nonlinear model - linearize around an operating point (which one to choose?)
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Controller design

Formulate the problem of current/voltage control design as an optimal control problem
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Find the (static) gain K that minimizes the norm of the transfer function matrix between w

(disturbance vector) and z (performance vector)
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Controller design

« SDP formulation to minimize the H,,-norm:

minimize vy

Y. M
Y >0
AY + BuM + (AY + B,M)T B, (CY + D, M)T
cY +D,M D, —~1

 To achieve the desired dynamic response

* introduce weights in the performance vector

 add constraints (e.g., bound the H,-norm of the transfer function between load current and voltage regulator output for
slow control)
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Controller design

 Design of inner current control (find K;)

* Introduce feedforward to accelerate regulation and decouple d- and g-axis dynamics
« Simplify the model — assume constant DC link voltage (AFE model is linear in this case!)
 Actual topology returned by the SDP solver is that of a Pl control

- Design of outer voltage control (find Ky and Ky ¢)

Current regulator in closed loop for the design of outer voltage control

Adapt optimization formulation to reflect control objectives

Non-minimum-phase system in inverting mode of operation (power to grid)

Available controller bandwidth is reduced

Linearize and design voltage control for inverting mode to have sufficient stability margins
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Controller design

« Bumpless transfer: how to switch between fast and slow gains without undue transients
caused by controller output discontinuities?

« Generally requires controller conditioning

* For static feedback, simple strategy can be applied

« Gains of the augmented states (integral states) should be placed before the integrator
«  Form the convex combination of both controllers: Ky = sKy s+ (1 —s5) Kys, 0<s< 1.
« Change s to achieve desired gain transfer performance
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Controller design
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Test results: Offline simulations

« Simulink model of two modules in parallel
» Impact of modeling assumptions
» Impact of phase-shifted PWM to reduce current harmonics
* Interactions between AFEs connected to the same transformer

* Matrix representation of 3-winding transformer
« Parameters derived from lab tests

« Constant current AC load
« Change load current direction to change from inverting to rectifying mode of operation
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Test results: Offline simulations
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Test results: Real-time simulations

« Real-time AFE modeling in Hypersim using switching functions (simulation time step of 25
us)

The equivalent of sixteen H-bridges is simulated

Resulting DC current divided by the number of H-bridge modules is injected as the load current of the AFE

« Custom-made DSP board to execute the compiled code of the controller (execution time
step of 250 us)

« State machine to include additional control and protection functions, including startup
sequence

 Resistive load drop/pickup are simulated
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Test results: Real-time simulations

Measurements: V,

|=i breaker status

PWM, breaker

commands RT Simulator

DSP Board I/O interface
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Test results: experimental setup

 Assembled 2-kV, 167-kVA module connected to 600 V grid through 600V/960V transformer
« Variable resistive load (20 to 80 Ohm) at the output of the H-bridge

« H-bridge switching frequency of 1 kHz

« Synthesized AC load voltage at 50 Hz
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Test results: experimental setup
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Concluding remarks

« Comprehensive validation of the proposed control strategy: offline simulations, real-time
testing and experimental validation

« Optimal control design for a set of standard control problems in the application of grid-tied
inverters

» Systematic design using powerful optimization tools (if reduced to a convex problem formulation)
» Further developments may include model uncertainty, characterizing limits of performance, etc.

 Many tools are available at IREQ to test new approaches
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Concluding remarks

* For further details, please see the following publication:

Rimorov, D., Tremblay, O., Slimani, K., Gagnon, R., & Couillard, B. (2022). Gain Scheduling
Control Design for Active Front End for Power-Hardware-in-The-Loop Application: An LMI
Approach. IEEE Transactions on Energy Conversion.

 Reach out to the SimP team for questions/discussions or if interested in collaboration!

Project manager/Team leader: Richard Gagnon (gagnon.richard2@hydroquebec.com)

Olivier Tremblay (tremblay.olivier@hydroquebec.com)

Karim Slimani (slimani.karim@hydroquebec.com)

Dmitry Rimorov (rimorov.dmitry@hydroquebec.com)
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Appendix

AFE parameters
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Description
Nominal LL AC voltage, RMS, V
AFE nominal power, kVA
Nominal DC voltage, V
AFE switching frequency, kHz
DC link capacitor, mF
AC output filter inductance, mH
AC output filter capacitance (Delta connected), uF

Value
960
167

2000

13.92
1.875
66
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