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Motivation

◼ Voltage fluctuations due to solar and other DERs

◼ Reactive power control using 

smart inverters

◼ Inefficiency of voltage control devices

voltage excursions

total load

solar generation

◼ Optimal scheduling of DERs via OPF
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OPF data

◼ DSO schedules DERs using OPF for varying grid data
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ohmic losses

voltage/network constraints

DER limits

◼ Data collected in decentralized fashion

❑ numerous buses sampled frequently

❑ data privacy/cyber-security

❑ incomplete observability

❑ where to install meters



OPF data distillation

◼ Fact: DSO must collect much data to solve the OPF

◼ Need: How to solve OPF on a data budget?

◼ Question: How to select and reconstruct OPF data?

❑ redundancies in OPF data and problem structure

OPF ‘features’
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Related works

◼ Handle uncertain parameters via stochastic/robust OPF [Roald+’23]

◼ Compress OPF datasets via PCA to train DNNs [Park+’23]

◼ Optimal placement of sensors for observability [Bhela+Kekatos’17]

◼ Optimal placement of sensors for controllability [Lin+’13, Dorfler+’14, Summers+’16]

◼ Optimal network reduction [Chevalier-Almassalkhi’22, Caliskan-Tabuada’12, Nikolakakos+’18]
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General methodology

◼ How to design

◼ Collect OPF data from representative loading scenarios

❑ normalized data (zero-mean and unit-variance)

◼ Type-1: Data-centric data distillation   

❑ design W to improve data fidelity

❑ PCA, DEIM, Group Lasso (GL) 

◼ Type-2: Minimizer-centric data distillation   

❑ design W to improve minimizer fidelity

❑ Bilevel Group Lasso (BGL)
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Principal component analysis (PCA)

◼ Finds best rank-K approximation of matrix

◼ Easy to find through EVD of covariance matrix

◼ Achieves minimum rank-K reconstruction error

◼ Compresses but does not select! … at least serves as a benchmark
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Discrete empirical interpolation method (DEIM)

◼ Suppose selection matrix S has been found

◼ Hard problem; low-complexity greedy algorithm

◼ DEIM selects data but cannot select groups of data

Barrault, Maday, Nguyen, and Patera, “An empirical interpolation method: application to efficient reduced-basis discretization of partial 
differential equations,” Comptes Rendus Mathematique, vol. 339, no. 9, pp. 667–672, 2004.

◼ DEIM reconstructs data as

◼ Neat interpolation property

◼ How to find selection matrix S?

❑ minimize upper bound
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◼ Effects simultaneous data selection and compression

◼ Columns of W can be stacked together in groups

◼ Parameter      controls block sparsity; use bisection to select exactly K columns  

◼ Two-stage GL: use GL to find the support (S) and least-squares fitting to finalize C

Group Lasso (GL)

◼ Finds a column-sparse W through convex group lasso (GL) problem

Yuan, Lin, ”Model selection and estimation in regression with grouped variables," 2007.

(GL):
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Proximal gradient descent for GL

◼ Generalizes gradient descent for non-differ. objectives

◼ Gradient descent step for differentiable part

◼ Accelerated PGD takes gradient step 

on extrapolated point (memory) 

◼ Proximal step for non-differentiable part
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◼ GL can be solved using SOCP, ADMM, PGD



Minimizer-centric data distillation

◼ Given labeled dataset          , design W via bilevel group lasso (BGL)

OPF

OPF

◼ Type-1 methods are agnostic to end use of OPF data

◼ Type-2 methods aim at fidelity of OPF solution

(BGL):

◼ Nonconvex bilevel program 

❑ replace inner problems by KKT to solve BGL as MINLP

❑ PGD iterative algorithm 
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Proximal gradient descent for BGL

◼ Gradient descent for 'differentiable’ part:

◼ More complicated extrapolation due to non-convexity

❑ take proximal gradient step at 3 candidate points and select the best

❑ enjoys convergence to stationary (critical) point

◼ Proximal step like before

◼ Gradient computation

Li and Lin, “Accelerated proximal gradient methods for nonconvex programming,” in Neural Information Processing Systems, 2015.

sensitivity analysis of OPF
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Sensitivity analysis of the OPF

◼ If optimal primal/dual solutions are known, find Jacobian by solving system of linear equations!

◼ Need to solve T (or 3T) OPFs and find their Jacobians per PGD iteration… 

❑ stochastic PGD (one OPF instance per iteration)

Singh, Kekatos, and Giannakis, “Learning to Solve the AC-OPF using Sensitivity-Informed DNNs,” IEEE TPWRS, 2022.
Taheri, Jalali, Kekatos, and Tong, “Fast Probabilistic Hosting Capacity Analysis for Active Distribution Systems,” IEEE TSG, 2021.

OPF Jacobian matrix 

◼ If OPF is LP/QP, use multiparametric programming (MPP)

❑ to expedite batch OPF computations by an order of magnitude
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Numerical tests
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◼ Load/solar from Pecan Street; EV data from NREL

◼ IEEE 37-bus feeder; P=50; N=10; T=800



Voltage deviations
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Conclusions

Related references

1) Jalali, Singh, Kekatos, Giannakis, and Liu, “Fast Inverter Control by Learning the OPF Mapping using Sensitivity-Informed 

Gaussian Processes,” TSG’23. 

2) Singh, Kekatos, Giannakis, “Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural Networks,” TPWRS’22.

3) Taheri, Jalali, Kekatos, Tong, “Fast Probabilistic Hosting Capacity Analysis for Active Distribution Systems,” TSG’21.

4) Singh, Gupta, Kekatos, Cavraro, and Bernstein, “Learning to Optimize Power Distribution Grids using Sensitivity-Informed 

Deep Neural Networks,” IEEE Smart Grid Comm, 2020.

OPF data distillation

 three methods

 PGD algorithms

 differentiation through OPF

Ongoing work

❑ stochastic PGD

❑ comparison to MINLP

❑ multiphase/AC-OPF

❑ meter placement for OPF

❑ OPF data security

❑ unsupervised learning

❑ nonlinear reconstruction

Thank You!

Preprint to appear on arxiv soon
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