

NREL, 7th Workshop on Autonomous Energy Systems

Online Learning for Residential Demand Response via Advanced Multi-Armed Bandits

Dr. Xin Chen

Assistant Professor Electrical & Computer Engineering Texas A&M University Email: xin_chen@tamu.edu 09/03/2024

Residential Demand Response

Why Study Residential Demand Response?

Because **residential** demand takes the **largest share**; Huge potential but **underutilized**.

Source: 2022 U.S. Energy Information Administration (EIA), "Annual Electric Power Industry Report".

Source: PJM, "Demand response operations market activity report," 2022. Percent of load capacity (MWs)

Due to budget constraints, need to select a subset of users (e.g., 1k) from the user pool (e.g., 10k)

Multi-Armed Bandits (MAB) Framework

Key Features: 1) Arms are different but independent; 2) Uncertain and unknown behaviors

Bandit Slot Machine

- Select one arm to maximize the profits;
- Observe the reward of the selected arm;
- Improve play strategies from feedback.

Demand Response

- Select a subset of users for DR;
- Observe responses from selected users;
- Learn users' behaviors from responses.

Application Examples

EV charging management

Residential load control

Problem Formulation

Consider a time horizon $[T] = \{1, 2, \cdots, T\}$ Each time $t \in [T]$ denotes a DR event.

Solution: Contextual Multi-Armed Bandits

• Logistic regression to predict $p_{i,t}$ for each user *i* at time *t* under contextual influence:

$$p_{i,t} = g(\boldsymbol{\theta}_i^{\top} \boldsymbol{x}_{i,t}) = \frac{1}{1 + \exp\left(-\boldsymbol{\theta}_i^{\top} \boldsymbol{x}_{i,t}\right)}$$
(Unknown) Individual Preference
$$\boldsymbol{\theta}_i = \left(\boldsymbol{\theta}_i^{(1)}, \boldsymbol{\theta}_i^{(2)}, \cdots, \boldsymbol{\theta}_i^{(m)}\right)$$
(electricity price, credit, weather, temperature, ...)

Online Learning and Human-In-the-Loop Decision:

Thompson Sampling

to learn unknown θ_i with balance of **exploitation** and **exploration**

Online Algorithm Based on Thompson Sampling.

- Assume unknown $m{ heta}_i$ be a random variable with Gaussian prior $\mathbb{P}_{m{ heta}_i} = \mathcal{N}(m{\mu}_i, m{\Sigma}_i)$.
- In each demand response event t,
 <u>Step 1:</u> Sample $\hat{\theta}_i$ from its distribution \mathbb{P}_{θ_i} .
 <u>Step 2:</u> Select users by solving
 Obj. $\max_{\mathcal{S}_t \subseteq [N]} \mathbb{E}(\sum_{i \in \mathcal{S}_t} c_{i,t} z_{i,t}) = \sum_{i \in \mathcal{S}_t} c_{i,t} p_{i,t}$ s.t. $\sum_{i \in \mathcal{S}_t} r_{i,t} \leq b_t$ $p_{i,t} = \frac{1}{1 + \exp\left(-\hat{\theta}_i^\top x_{i,t}\right)}$ Obj. $\max_{\alpha_{i,t} \in \{0,1\}} \sum_{i=1}^N c_{i,t} p_{i,t} \alpha_{i,t}$ s.t. $\sum_{i \in \mathcal{S}_t} r_{i,t} \leq b_t$ S.t. $\sum_{i \in \mathcal{S}_t} r_{i,t} \leq b_t$

<u>Step 3:</u> Update posterior $\mathbb{P}_{\theta_i} \leftarrow \mathbb{P}_{\theta_i}(\cdot | x_{i,t}, z_{i,t})$ with the observation $x_{i,t}, z_{i,t}$.

variational Bayesian inference approach [3]

[3] T. S. Jaakkola and M. I. Jordan, "A variational approach to Bayesian logistic regression models and their extensions". in Sixth International Workshop on Artificial Intelligence and Statistics, vol. 82, pp. 4, 1997.

Regret Analysis

• T-time Regret: Regret
$$(T, \theta) = \sum_{t=1}^{T} \mathbb{E} \left[f_{\theta}(\mathcal{S}_{t}^{*}, t) - f_{\theta}(\mathcal{S}_{t}, t) \mid \theta \right]$$

Optimal objective with true θ .

Objective using the proposed algorithm.

■ T-time Bayesian Regret: BayesRegret $(T) = \mathbb{E}_{\theta \sim P_0} [\text{Regret}(T, \theta)]$

Theorem (informal): When T is sufficiently large, the Bayesian regret is

$$\begin{split} & \text{BayesRegret}(T) \leq O\left(N^2 \gamma^d \sqrt{T \log T (d + \log T)}\right) \sim O(\log(T) \sqrt{T}) \\ & \text{where } \gamma = \exp(2 \sup_{i \in [N]} ||\boldsymbol{\theta}_i||_{\infty}) \text{ and } d \text{ is the dimension of } \boldsymbol{\theta}_i \text{.} \end{split} \text{ sublinear}$$

Recent Extension: Contextual Restless Bandits

• temperature, weather, price, time ...

• User "fatigue effect" . . .

Recent Extension: Contextual Restless Bandits

• temperature, weather, price, time ...

• **X. Chen**, I. Hou, "Contextual Restless Multi-Armed Bandits with Application to Demand Response Decision-Making", IEEE CDC, 2024.

CRB Problem Formulation

Consider N arms and an infinite time horizon $t = 0, 1, 2, \cdots$

Solution Algorithm: Dual Decomposition

Solution Algorithm: Dual Decomposition

Gradient descent update of λ

 $\checkmark \text{ Optimal Q-function: } Q_{i,\boldsymbol{\lambda}}^*(g,s,a) = R_i(g,s,a) - \lambda_g a + \beta \sum_{g' \in \mathcal{G}, s' \in \mathcal{S}} G(g'|g) P_i(s'|g,s,a) V_{i,\boldsymbol{\lambda}}^*(g',s').$

Optimal local policy:

$$\rho_i^*(\boldsymbol{\lambda}) : a_{i,t} = \begin{cases} 1, & \text{if } Q_{i,\boldsymbol{\lambda}}^*(g_t, s_{i,t}, 1) > Q_{i,\boldsymbol{\lambda}}^*(g_t, s_{i,t}, 0) \\ 0, & \text{otherwise.} \end{cases}$$

Index Policy with Known Models

Algorithm 1 Index Policy Algorithm for Solving the CRB Problem with Known Arm Models.

1: Initialization: $\lambda^{(0)} := (\lambda_g^{(0)})_{g \in \mathcal{G}} \leftarrow \mathbf{0}; k \leftarrow 0; \epsilon > 0.$

2: repeat

3: Perform the following three steps for each arm $i \in [N]$ in parallel:

1) Solve $\mathbf{LP}_i(\boldsymbol{\lambda}^{(k)})$ (9) to obtain $V_{i,\boldsymbol{\lambda}^{(k)}}^*(g,s)$;

- 2) Compute the Q-function $Q_{i,\boldsymbol{\lambda}^{(k)}}^*(g,s,a)$ by (10); 3) Construct the optimal policy $\rho_i^*(\boldsymbol{\lambda}^{(k)})$ by (11).
- 4: Let $\pi^*(\lambda^{(k)}) := (\rho_i^*(\lambda^{(k)}))_{i \in [N]}$, and perform the update (7) to obtain $\lambda^{(k+1)}$, where the expectation is computed using (12)-(14). Let $k \leftarrow k+1$.

5: **until** the convergence
$$||\boldsymbol{\lambda}^{(k)} - \boldsymbol{\lambda}^{(k-1)}|| \leq \epsilon$$
 is met.

6: Let $\boldsymbol{\lambda}^* \leftarrow \boldsymbol{\lambda}^{(k)}$.

- 7: for time t = 0, 1, 2, ... do
- 8: Compute the index of each arm $i \in [N]$:

Index of each arm +

Real-time application:

1. Compute index of

2. Rank arms by index

3. Select top C_{q_t} arms

each arm

values

- $\mathbf{m} \longleftarrow I_{i,t} \leftarrow Q_{i,\lambda^*}^*(g_t, s_{i,t}, 1) Q_{i,\lambda^*}^*(g_t, s_{i,t}, 0).$ (15) 9: Sort all arms such that $I_{(1),t} > I_{(2),t} > \cdots > I_{(N),t}.$
 - 9: Sort all arms such that $I_{(1),t} \ge I_{(2),t} \ge \cdots \ge I_{(N),t}$. 10: Activate the top C_{g_t} arms $(1), (2), \cdots, (C_{g_t})$.
 - 11: end for

Solve Relaxed Problem to obtain λ^* via dual decomposition

Implement Index Policy (ensure budget constraint)

18

Online Learning with Unknown Models

Algorithm 2 Online Learning Algorithm for Solving the CRB Problem with Unknown Arm Models. 1: Initialization: Time window T; $\epsilon_n > 0$; initial transition kernel $P_i^0(\cdot)$ of each arm $i \in [N]$. 2: for epoch n = 0, 1, 2, ... do Based on the up-to-date transition kernel model $P_i^n(\cdot)$ Solve Relaxed Problem 3: of each arm $i \in [N]$, follow Steps 2.6 in Algorithm 1 to compute the optimal λ_n^* . for time $t = nT, nT+1, \cdots, nT+T-1$ do 4: With probability of $1 - \epsilon_n$, 5: - Compute the index $I_{i,t}$ (16) of each arm $i \in [N]$; Implement Index Policy - Sort all arms such that $I_{(1),t} \ge I_{(2),t} \ge \cdots \ge$ $I_{(N),t}$ and activate the top C_{g_t} arms. with ϵ -exploration With probability of ϵ_n , randomly activate C_{q_t} arms. end for 6: For each arm $i \in [N]$, based on the observed state 7: **Better online learning algorithms:** transitions, update its transition kernel model by: Thompson Sampling, UCB, Q-learning $P_i^{n+1}(s_{i,t+1}=s'|g_t=g, s_{i,t}=s, a_{i,t}=a) = \frac{M_{s',g,s,a}^i}{M_{a,s,a}^i},$ Update estimation of where $M_{g,s,a}^i$ and $M_{s',g,s,a}^i$ are arm *i*'s cumulative histransition kernel models torical counts of the context-state-action tuple (q, s, a)and the state transition $(g, s, a) \rightarrow s'$. **Function approximation for Scalability** 8: end for

Theoretical Analysis: Asymptotical Optimality

Theorem 1. Suppose that the initial global context g_0 is chosen uniformly at random from \mathcal{G} and the initial state $s_{i,0}$ of each arm $i \in [N]$ is chosen independently with the distribution $\mathbb{P}(s_{i,0} = s | g_0 = g) = m_g^*(s)$, then, under Assumption 1, we have

$$V_{\rm Rel}^N \ge V_{\rm Pri}^N \ge V_{\rm Rel}^N - \mathcal{O}(\sqrt{N}).$$
(20)

as $N \to \infty$ $V_{\rm Rel}^N / N \longrightarrow V_{\rm Pri}^N / N$

20

Numerical Simulations

Residential Demand Response:

- Number of users (arms) N = 500
- Discrete global context

$$g \in \mathcal{G} = \{1, 2, \cdots, 6\}$$

- Selection budget C = 100
- State: $s_{i,t} := (z_{i,t}, x_{i,t})$ $x_{i,t} \in \{1, 2, \cdots, 4\}$
- Reward: $R_i(\cdot) = \frac{a_{i,t} z_{i,t} l_i}{(g_t x_{i,t})^2 + 1}$
- Discount factor $\beta = 0.97$ finite time horizon T = 300

Fig 1. Convergence of Dual Decomposition Alg.

Numerical Simulations

Fig 2. Asymptotical optimality of index policy.

Fig 3. Comparison with Restless bandits.

 $V_{\rm Rel}^N \ge V_{\rm Pri}^N \ge V_{\rm Ind}^N$

Online learning for human-in-the-loop DR decision

* The multi-armed bandits (MAB) method is useful for large-scale DR online decision-making.

- A novel MAB framework, Contextual Restless Bandits (CRB), models both the dynamic state transitions of each arm and the influence of external global environmental context.
- A scalable **index policy** algorithm based on dual decomposition is proposed to solve CRB.
- Simulation results demonstrate the **asymptotic optimality** and enhanced **modeling capability**.

References

[1] A. Slivkins et al., "Introduction to multi-armed bandits," Foundations and Trends in Machine Learning, vol. 12, no. 1-2, pp. 1–286, 2019

[2] L. Zhou, "A survey on contextual multi-armed bandits," arXiv preprint, arXiv:1508.03326, 2015.

[3] P. Whittle, "Restless bandits: Activity allocation in a changing world," Journal of Applied Probability, vol. 25, no. A, pp. 287–298, 1988.

[4] R. R. Weber and G. Weiss, "On an index policy for restless bandits," Journal of Applied Probability, vol. 27, no. 3, pp. 637–648, 1990.

[5] X. Chen, I. Hou, "Contextual Restless Multi-Armed Bandits with Application to Demand Response Decision-Making", arXiv:2403.15640, 2024.

[6] X. Chen, Y. Li, J. Shimada, and N. Li, "Online learning and distributed control for residential demand response," IEEE Transactions on Smart Grid, vol. 12, no. 6, pp. 4843–4853, 2021.

[7] X. Chen, Y. Nie, and N. Li, "Online residential demand response via contextual multi-armed bandits," IEEE Control Systems Letters, vol. 5, no. 2, pp. 433–438, 2020.

[8] B. Liang, L. Xu, A. Taneja, M. Tambe, and L. Janson, "A Bayesian approach to online learning for contextual restless bandits with applications to public health," arXiv preprint arXiv:2402.04933, 2024

[9] J. A. Taylor and J. L. Mathieu, "Index policies for demand response," IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1287–1295, 2013.

[10] N. Gast, B. Gaujal, and C. Yan, "Exponential convergence rate for the asymptotic optimality of whittle index policy," arXiv preprint arXiv:2012.09064, 2020.